首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11篇
  免费   0篇
  2021年   1篇
  2019年   1篇
  2016年   1篇
  2013年   2篇
  2012年   1篇
  2009年   1篇
  2000年   2篇
  1998年   1篇
  1994年   1篇
排序方式: 共有11条查询结果,搜索用时 31 毫秒
1.
Summary The protective influence of bovine serum albumin against growth inhibition caused by fatty acids was studied in human hepatoma (HepG2) and immortalized human kidney epithelial (IHKE) cells. In general, growth inhibition by unsaturated fatty acids (0.15 mmol/liter) increased with increasing number of double bonds. For HepG2 cells crude albumin (1g/100 ml) did not greatly modify growth inhibition by arachidonic, eicosapentaenoic, and docosahexaenoic acid. With oleic, linoleic, and linolenic acids, crude and defatted albumin stimulated cell growth. In contrast, for IHKE cells both albumins counteracted growth inhibition by unsaturated fatty acids to approximately the same extent. When HepG2 cells were cultured in the presence of saturated fatty acids (0.3 mmol/liter), C2, C6, and C8 had no or little inhibitory effect. C10 and C12 inhibited cell growth appreciably, whereas C14, and especially C16, had poor inhibitory effects. Crude albumin counteracted growth inhibition by all these fatty acids. In contrast, defatted albumin had little or no effect (except against C10 and C12), and even increased the growth inhibition by C14 and C16. With unsaturated fatty acids there seemed to be an inverse relationship between cell growth and the concentration of thiobarbituric acid reactive substances (TBARS) in media. Vitamin E abolished growth inhibition (and the increase in TBARS concentration) by unsaturated fatty acids. The complex interaction between fatty acids and albumins calls for great caution when interpreting data on growth effects.  相似文献   
2.
Circadian rhythmicity is fundamental to human physiology, and is present even during fetal life in normal pregnancies. The impact of maternal endocrine disease on the fetal circadian rhythm is not well understood. The present study aimed to determine the fetal circadian rhythm in pregnancies complicated by pregestational diabetes mellitus (PGDM), compare it with a low-risk reference population, and identify the effects of maternal glycemic control and morning cortisol concentrations. Long-term fetal electrocardiogram recordings were made in 40 women with PGDM at 28 and 36 weeks of gestation. Two recordings were made in 18 of the women (45.0%) and one recording was made in 22 (55.0%). The mean fetal heart rate (fHR) and the fHR variation (root mean square of squared differences) were extracted in 1-min epochs, and circadian rhythmicity was detected by cosinor analysis. The study cohort was divided based on HbA1c levels and morning cortisol concentrations. Statistically, significant circadian rhythms in the fHR and the fHR variation were found in 45 (100%) and 44 (95.7%) of the 45 acceptable PGDM recordings, respectively. The rhythms were similar to those of the reference population. However, there was no statistically significant population-mean rhythm in the fHR among PGDM pregnancies at 36 weeks, indicating an increased interindividual variation. The group with higher HbA1c levels (>6.0%) had no significant population-mean fHR rhythm at 28 or 36 weeks, and no significant fHR-variation rhythm at 36 weeks. Similarly, the group with a lower morning cortisol concentration (≤8.8 µg/dl) had no significant population-mean fHR-variation rhythm at 28 and 36 weeks. These findings indicate that individual fetal rhythmicity is present in pregnancies complicated by PGDM. However, suboptimal maternal glycemic control and a lower maternal morning cortisol concentration are associated with a less-well-synchronized circadian system of the fetus.  相似文献   
3.
A mathematical model of umbilical venous pulsation   总被引:1,自引:0,他引:1  
Pulsations in the fetal heart propagate through the precordial vein and the ductus venosus but are normally not transmitted into the umbilical vein. Pulsations in the umbilical vein do occur, however, in early pregnancy and in pathological conditions. Such transmission into the umbilical vein is poorly understood. In this paper we hypothesize that the mechanical properties and the dimensions of the vessels do influence the umbilical venous pulsations, in addition to the magnitude of the pressure and flow waves generated in the fetal atria. To support this hypothesis we established a mathematical model of the umbilical vein/ductus venosus bifurcation. The umbilical vein was modeled as a compliant reservoir and the umbilical vein pressure was assumed to be equal to the stagnation pressure at the ductus venosus inlet. We calculated the index of pulsation of the umbilical vein pressure ((max-min)/mean), the reflection and transmission factors at the ductus venosus inlet, numerically and with estimates. Typical dimensions in the physiological range for the human fetus were used, while stiffness parameters were taken from fetal sheep. We found that wave transmission and reflection in the umbilical vein ductus venosus bifurcation depend on the impedance ratio between the umbilical vein and the ductus venosus, as well as the ratio of the mean velocity and the pulse wave velocity in the ductus venosus. Accordingly, the pulsations initiated by the fetal heart are transmitted upstream and may arrive in the umbilical vein with amplitudes depending on the impedance ratio and the ratio between the mean velocity and the pulse wave velocity in the ductus venosus.  相似文献   
4.
The veins distributing oxygenated blood from the placenta to the fetal body have been given much attention in clinical Doppler velocimetry studies, in particular the ductus venosus. The ductus venosus is embedded in the left liver lobe and connects the intra-abdominal portion of the umbilical vein (IUV) directly to the inferior vena cava, such that oxygenated blood can bypass the liver and flow directly to the fetal heart. In the current work, we have developed a mathematical model to assist the clinical assessment of volumetric flow rate at the inlet of the ductus venosus. With a robust estimate of the velocity profile shape coefficient (VC), the volumetric flow rate may be estimated as the product of the time-averaged cross-sectional area, the time-averaged cross-sectional maximum velocity and the VC. The time average quantities may be obtained from Doppler ultrasound measurements, whereas the VC may be estimated from numerical simulations. The mathematical model employs a 3D fluid structure interaction model of the bifurcation formed by the IUV, the ductus venosus and the left portal vein. Furthermore, the amniotic portion of the umbilical vein, the right liver lobe and the inferior vena cava were incorporated as lumped model boundary conditions for the fluid structure interaction model. A hyperelastic material is used to model the structural response of the vessel walls, based on recently available experimental data for the human IUV and ductus venous. A parametric study was constructed to investigate the VC at the ductus venosus inlet, based on a reference case for a human fetus at 36 weeks of gestation. The VC was found to be \(0.687\,\pm \,0.023\) (Mean \(\pm \) SD of parametric case study), which confirms previous studies in the literature on the VC at the ductus venosus inlet. Additionally, CFD simulations with rigid walls were performed on a subsection of the parametric case study, and only minor changes in the predicted VCs were observed compared to the FSI cases. In conclusion, the presented mathematical model is a promising tool for the assessment of ductus venosus Doppler velocimetry.  相似文献   
5.
Pressure and flow pulsations in the fetal heart propagate through the precordial vein and the ductus venosus (DV) but are normally not transmitted into the umbilical vein (UV). Pulsations in the umbilical vein do occur, however, in early pregnancy and in pathological conditions. Such transmission into the umbilical vein is not well understood. In particular, the effect of the impedance changes in the DV due to its tapered geometry is not known. This paper presents a mathematical model that we developed to study the transmission of pulsations, originating in the fetal heart, through the DV to the umbilical vein. In our model, the tapered geometry of the DV was found to be of minor importance and the only effective reflection site in the DV appears to be at the DV inlet. Differences between the DV inlet and outlet flow were also found to be minor for medium to large umbilical vein–DV diameter ratios. Finally, the results of a previously proposed lumped model were found to agree well with the present model of the DV–umbilical vein bifurcation.  相似文献   
6.
7.
8.
Among primates, human neonates have the largest brains but also the highest proportion of body fat. If placental nutrient supply is limited, the fetus faces a dilemma: should resources be allocated to brain growth, or to fat deposition for use as a potential postnatal energy reserve? We hypothesised that resolving this dilemma operates at the level of umbilical blood distribution entering the fetal liver. In 381 uncomplicated pregnancies in third trimester, we measured blood flow perfusing the fetal liver, or bypassing it via the ductus venosus to supply the brain and heart using ultrasound techniques. Across the range of fetal growth and independent of the mother''s adiposity and parity, greater liver blood flow was associated with greater offspring fat mass measured by dual-energy X-ray absorptiometry, both in the infant at birth (r = 0.43, P<0.001) and at age 4 years (r = 0.16, P = 0.02). In contrast, smaller placentas less able to meet fetal demand for essential nutrients were associated with a brain-sparing flow pattern (r = 0.17, p = 0.02). This flow pattern was also associated with a higher degree of shunting through ductus venosus (P = 0.04). We propose that humans evolved a developmental strategy to prioritize nutrient allocation for prenatal fat deposition when the supply of conditionally essential nutrients requiring hepatic inter-conversion is limited, switching resource allocation to favour the brain if the supply of essential nutrients is limited. Facilitated placental transfer mechanisms for glucose and other nutrients evolved in environments less affluent than those now prevalent in developed populations, and we propose that in circumstances of maternal adiposity and nutrient excess these mechanisms now also lead to prenatal fat deposition. Prenatal developmental influences play important roles in the human propensity to deposit fat.  相似文献   
9.
The pressure drop from the umbilical vein to the heart plays a vital part in human fetal circulation. The bulk of the pressure drop is believed to take place at the inlet of the ductus venosus, a short narrow branch of the umbilical vein. In this study a generalized Bernoulli formulation was deduced to estimate this pressure drop. The model contains an energy dissipation term and flow-scaled velocities and pressures. The flow-scaled variables are related to their corresponding spatial mean velocities and pressures by certain shape factors. Further, based on physiological measurements, we established a simplified, rigid-walled, three-dimensional computational model of the umbilical vein and ductus venosus bifurcation for stationary flow conditions. Simulations were carried out for Reynolds numbers and umbilical vein curvature ratios in their respective physiological ranges. The shape factors in the Bernoulli formulation were then estimated for our computational models. They showed no significant Reynolds number or curvature ratio dependency. Further, the energy dissipation in our models was estimated to constitute 24 to 31 percent of the pressure drop, depending on the Reynolds number and the curvature ratio. The energy dissipation should therefore be taken into account in pressure drop estimates.  相似文献   
10.
To study the regulation of the ductus venosus (DV) inlet in vivo, we measured the effect of vasoactive substances and hypoxemia on its diameter in nine fetal sheep in utero at 0.9 gestation under ketamine-diazepam anesthesia. Catheters were inserted into an umbilical vein and a fetal common carotid artery, and a flowmeter was placed around the umbilical veins. Ultrasound measurements of the diameter of the fetal DV during normoxic baseline conditions [fetal arterial PO(2) (PaO(2)) 24 mmHg] were compared with measurements during infusion of sodium nitroprusside (SNP; 1.3, 2.6, and 6.5 microg. kg(-1). min(-1)) or the alpha(1)-adrenergic agonist phenylephrine (6.5 microg. kg(-1). min(-1)) into the umbilical vein or during hypoxemia (fetal Pa(O(2)) reduced to 10 mmHg). SNP increased the DV inlet diameter by 23%, but phenylephrine had no effect. Hypoxemia caused a 61% increase of the inlet diameter and a distension of the entire vessel. We conclude that the DV inlet is tonically constricted, because nitric oxide dilates it but an alpha(1)-adrenergic agonist does not potentiate constriction. Hypoxemia causes a marked distension of the entire DV.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号