首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2976篇
  免费   186篇
  3162篇
  2022年   23篇
  2021年   30篇
  2020年   21篇
  2019年   42篇
  2018年   39篇
  2017年   50篇
  2016年   58篇
  2015年   100篇
  2014年   101篇
  2013年   170篇
  2012年   213篇
  2011年   187篇
  2010年   135篇
  2009年   114篇
  2008年   205篇
  2007年   234篇
  2006年   202篇
  2005年   175篇
  2004年   194篇
  2003年   186篇
  2002年   192篇
  2001年   34篇
  2000年   33篇
  1999年   27篇
  1998年   30篇
  1997年   22篇
  1996年   29篇
  1995年   21篇
  1994年   25篇
  1993年   21篇
  1992年   11篇
  1991年   20篇
  1990年   13篇
  1989年   18篇
  1988年   12篇
  1987年   22篇
  1986年   12篇
  1985年   13篇
  1984年   17篇
  1983年   10篇
  1982年   8篇
  1980年   6篇
  1979年   7篇
  1975年   8篇
  1973年   9篇
  1972年   9篇
  1971年   6篇
  1970年   5篇
  1969年   6篇
  1968年   5篇
排序方式: 共有3162条查询结果,搜索用时 0 毫秒
1.
We discovered a new cataract mutation, kfrs4, in the Kyoto Fancy Rat Stock (KFRS) background. Within 1 month of birth, all kfrs4/kfrs4 homozygotes developed cataracts, with severe opacity in the nuclei of the lens. In contrast, no opacity was observed in the kfrs4/+ heterozygotes. We continued to observe these rats until they reached 1 year of age and found that cataractogenesis did not occur in kfrs4/+ rats. To define the histological defects in the lenses of kfrs4 rats, sections of the eyes of these rats were prepared. Although the lenses of kfrs4/kfrs4 homozygotes showed severely disorganised fibres and vacuolation, the lenses of kfrs4/+ heterozygotes appeared normal and similar to those of wild-type rats. We used positional cloning to identify the kfrs4 mutation. The mutation was mapped to an approximately 9.7-Mb region on chromosome 7, which contains the Mip gene. This gene is responsible for a dominant form of cataract in humans and mice. Sequence analysis of the mutant-derived Mip gene identified a 5-bp insertion. This insertion is predicted to inactivate the MIP protein, as it produces a frameshift that results in the synthesis of 6 novel amino acid residues and a truncated protein that lacks 136 amino acids in the C-terminal region, and no MIP immunoreactivity was observed in the lens fibre cells of kfrs4/kfrs4 homozygous rats using an antibody that recognises the C- and N-terminus of MIP. In addition, the kfrs4/+ heterozygotes showed reduced expression of Mip mRNA and MIP protein and the kfrs4/kfrs4 homozygotes showed no expression in the lens. These results indicate that the kfrs4 mutation conveys a loss-of-function, which leads to functional inactivation though the degradation of Mip mRNA by an mRNA decay mechanism. Therefore, the kfrs4 rat represents the first characterised rat model with a recessive mutation in the Mip gene.  相似文献   
2.
3.
Substance P is known to modulate neuronal nicotinicacetylcholine receptors (nAChRs) in the sympathetic nervous system.There are two conflicting proposals for the mechanism of this effect, an indirect action mediated by protein kinase C (PKC) and a direct interaction with receptor subunits. We studied the mechanisms of thiseffect in PC-12 cells. Substance P enhanced the decay of thenicotine-induced whole cell current. This effect was fast in its onsetand was not antagonized by guanosine5'-O-(2-thiodiphosphate), a G protein blocker, orstaurosporine, a nonselective PKC blocker. Staurosporine failed toreverse the inhibition by 1-oleoyl-2-acetyl-sn-glycerol (OAG), a synthetic diacylglycerol analog known to activate PKC. Theinhibitory effects of the peptide and OAG were preserved in excisedpatches, but substance P applied to the extra patch membrane wasineffective in the cell-attached patch configuration. We conclude thatsubstance P modulates neuronal nAChRs most likely by direct interactions with the receptors but independently from activation ofPKC or G proteins and that PKC does not participate in modulation by OAG.

  相似文献   
4.
Sarcoplasmic reticulum vesicles were modified with a fluorescent thiol reagent, N-iodoacetyl-N'-(5-sulfo-1-naphthyl)ethylenediamine. One mol of readily reactive thiols per mol of the Ca2+-ATPase was labeled without a loss of the catalytic activity. The fluorescence of the label increased by 8% upon binding of Ca2+ to the high affinity sites of the enzyme. This fluorescence enhancement probably reflects a conformational change responsible for Ca2+-induced enzyme activation. Upon addition of ATP to the Ca2+-activated enzyme, the fluorescence decreased by 15%. This fluorescence drop and formation of the phosphoenzyme intermediate were determined under the same conditions with a stopped-flow apparatus and a rapid quenching system. The amplitude of the fluorescence drop thus determined was saturated with 3 microM ATP. This shows that the fluorescence drop was caused by ATP binding to the catalytic site. In contrast, the rate of the fluorescence drop was not saturated even with 50 microM ATP. The fluorescence drop coincided with phosphoenzyme formation at 0.5 or 3 microM ATP, but it became much faster than phosphoenzyme formation when the ATP concentration was raised to 100 microM. These results indicate that the ATP-induced fluorescence drop reflects a conformational change in the enzyme.ATP complex. The fluorescence drop was accompanied by a red spectrum shift, which suggests that the label was exposed to a more hydrophilic environment. The electrophoretic analysis of the tryptic digest of the labeled enzyme (10.9 kDa) showed that almost all of the label was located on the 5.2-kDa fragment which includes the carboxyl terminus and the putative ATP-binding domain. The sequencing of the two major labeled peptides, which were isolated from the thermolytic digest of the labeled enzyme, revealed that the labeled site in either of these peptides was Cys674. It seems likely that the label bound to this Cys674 could be involved in the observed fluorescence changes.  相似文献   
5.
Summary The identity of monoamine-emitted, formaldehyde-induced fluorescence in some pancreatic islet cells was studied in pancreatic tissue of male chickens by fluorescence and immunohistochemistry either on the same tissue section or on serial tissue sections. Pancreatic islet cells emitting intense formaldehyde-induced fluorescence also react immunohistochemically with antisera directed against glucagon, serotonin and aromatic L-amino acid decarboxylase. These results show that chicken pancreatic islet A cells contain glucagon, serotonin, and aromatic L-amino acid decarboxylase, an enzyme involved in the synthesis of serotonin. The islet B cells identified with anti-insulin immunoreactivity, which displayed a very weak formaldehyde-induced fluorescence, did not react with anti-serotonin serum.  相似文献   
6.
The synthesis of a major collagen-binding glycoprotein of molecular weight 47,000 was previously shown to be altered by malignant transformation as well as by heat shock in chick embryo fibroblasts (Nagata, K., and Yamada, K.M. (1986) J. Biol. Chem. 261, 7531-7536 and Nagata, K., Saga, S., and Yamada, K.M. (1986) J. Cell Biol. 103, 223-229). In this paper, we examined the synthesis of this heat shock protein (hsp47) in terms of possible functional precursors and its regulation after heat shock and transformation by Rous sarcoma virus. Actinomycin D inhibited the induction of hsp47 after heat shock. Messenger RNAs purified from chick embryo fibroblasts (CEF), heat-treated CEF, and transformed CEF were analyzed in an in vitro translation system. In vitro translated products readily bound to gelatin-Sepharose, and levels were increased after heat shock and decreased after transformation. The increase in mRNA after heat shock was shown more directly by Northern assay using a synthetic oligonucleotide probe. We identified two putative precursors of hsp47 using an in vitro translation/processing system and tunicamycin: one is a 42-kDa primary translation product and the second is a 41-kDa polypeptide lacking signal peptide and carbohydrate moieties. Both of these precursors are biologically active as determined by gelatin-binding activity, in contrast to the lack of binding activity of precursors in several other membrane-associated receptor systems.  相似文献   
7.
The cls gene responsible for cardiolipin synthesis in Escherichia coli K-12 was cloned in a 5-kilobase-pair DNA fragment inserted in a mini-F vector, pML31, and then subcloned into a 2.0-kilobase-pair fragment inserted in pBR322. The initial selection of the gene was accomplished in a cls pss-1 double mutant that had lesions in both cardiolipin and phosphatidylserine synthases and required either the cls or the pss gene product for normal growth at 42 degrees C in a broth medium, NBY, supplemented with 200 mM sucrose. The cloned gene was identified as the cls gene by the recovery and amplification of both cardiolipin and cardiolipin synthase in a cls mutant as well as by the integration of a pBR322 derivative into its genetic locus at 27 min on the chromosome of a polA1 mutant. The maxicell analysis indicated that a protein of molecular weight 46,000 is the gene product. The cls gene is thus most likely the structural gene coding for cardiolipin synthase. Hybrid plasmids of high copy numbers containing the cls gene were growth inhibitory to pss-I mutants under the above selective conditions, whereas they inhibited neither the growth of pss-I mutants at 30 degrees C nor that of pss+ strains at any temperature. Amplification of cardiolipin synthase activity was observed, but was not proportional to the probable gene dosage (the enzyme activity was at most 10 times that in wild-type cells), and cardiolipin synthesis in vivo was at the maximum 1.5 times that in wild-type strains, implying the presence in E. coli cells of a mechanism that avoids cardiolipin overproduction, which is possibly disadvantageous to proper membrane functions.  相似文献   
8.
When rat sciatic nerves were incubated with C14l-lysine, l- or d-glutamate, or d-l γ-aminoisobutyrate, the labeled compounds penetrated the nerve, and the level of lysine and leucine after 1 hr was higher in the nerve than in the medium. The level increased with time, and at 24 hr glutamate levels also were higher in the nerve than in the medium. Lowering the temperature strongly inhibited uptake, while other conditions such as absence of glucose, absence of sodium, or the presence of cyanide inhibited uptake by nerve less than uptake by brain slices. The uptake against a concentration gradient, and inhibitions of this uptake by metabolic inhibitors and by structural analogs, were interpreted as showing the presence of transport processes for amino acids in peripheral nerves with characteristics similar to such transport processes in the central nervous system.  相似文献   
9.
10.
From somata of the pacemaker neurons in the Squilla heart ganglion, pacemaker potentials for the spontaneous periodic burst discharge are recorded with intracellular electrodes. The electrical activity is composed of slow potentials and superimposed spikes, and is divided into four types, which are: (a) "mammalian heart" type, (b) "slow generator" type, (c) "slow grower" type, and (d) "slow deficient" type. Since axons which are far from the somata do not produce slow potentials, the soma and dendrites must be where the slow potentials are generated. Hyperpolarization impedes generation of the slow potential, showing that it is an electrically excitable response. Membrane impedance increases on depolarization. Brief hyperpolarizing current can abolish the plateau but brief tetanic inhibitory fiber stimulation is more effective for the abolition. A single stimulus to the axon evokes the slow potential when the stimulus is applied some time after a previous burst. Repetitive stimuli to the axon are more effective in eliciting the slow potential, but the depolarization is not maintained on continuous stimulation. Synchronization of the slow potential among neurons is achieved by: (a) the electrotonic connections, with periodic change in resistance of the soma membrane, (b) active spread of the slow potential, and (c) synchronization through spikes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号