首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   113篇
  免费   11篇
  2024年   1篇
  2023年   2篇
  2022年   1篇
  2021年   3篇
  2020年   3篇
  2019年   6篇
  2017年   2篇
  2016年   3篇
  2015年   11篇
  2014年   8篇
  2013年   5篇
  2012年   10篇
  2011年   10篇
  2009年   9篇
  2008年   11篇
  2007年   5篇
  2006年   2篇
  2005年   2篇
  2004年   3篇
  2003年   4篇
  2001年   2篇
  2000年   2篇
  1997年   2篇
  1994年   1篇
  1992年   1篇
  1989年   1篇
  1988年   2篇
  1987年   1篇
  1986年   3篇
  1985年   2篇
  1984年   1篇
  1982年   1篇
  1981年   3篇
  1977年   1篇
排序方式: 共有124条查询结果,搜索用时 31 毫秒
1.
P. lanceolata andP. major were grown in culture solutions with nitrate or ammonium as the nitrogen source. Dry matter accumulation in the shoot was faster with nitrate than with ammonium, whilst that of the roots was not affected by the nitrogen source. As a consequence, the shoot-to-root ratio was lower with ammonium than with nitrate. InP. lanceolata, dry matter percentage of shoot and root tissue was lower with nitrate nutrition, suggesting better elongation growth than with ammonium. However, in shoot tissue ofP. major the opposite was found. The rate of root respiration declined with time, and this was almost completely due to a declining activity of the alternative path, which amounted to about 30–60% of total root respiration. Respiration via the cytochrome path was for a part of time slightly increased by ammonium, whereas the activity of the alternative path was strongly enhanced. The concentration of ethanol-soluble carbohydrates (SC) in the roots of both species was higher when nitrate was used, but no difference in the concentration of starch was found. When the plants were transferred from one nitrogen source to the other, many parameters, including the concentration of nitrate and chloride, and the shoot to root ratio, adjusted to the new situation in both species. Grassland Species Research Group, Publication no. 116.  相似文献   
2.
To study aspects of the ecology of grassland species, in a comparative experiment, plants ofP. lanceolata andP. major were grown in pots in a greenhouse, and subjected to a gradual nitrate depletion for several weeks. Control plants were weekly supplied with nitrate. Growth, leaf appearance and disappearance, concentrations of cations and inorganic anions, soluble and insoluble reduced nitrogen concentrations,in vivo nitrate reductase activity (NRA) and the concentration of non-structural carbohydrates in several parts of the plants were followed. Depletion of nitrate caused a reduction of shoot growth, both in biomass and number of leaves. Withering of leaves increased. Accumulation of root dry matter was little (P. lanceolata), or not (P. major) affected. The concentration of reduced nitrogen in all tissues also decreased, both that of the soluble and that of the insoluble fraction. As a result, nitrogen use efficiency (NUE, g dry matter produced per mmol N incorporated) increased by nitrate depletion. NRA was higher in the roots than in the leaves, and decreased with increasing nitrate depletion. In control plants, nitrate became also limiting. This resulted in decreasing nitrate concentrations in leaves and roots. In the leaves, the decrease in nitrate concentration was preceded by a decrease in NRA. The decrease of the nitrate concentration was parallelled by an increase in the concentration of soluble sugar. No major differences in the response towards nitrate depletion were observed between the two species. Grassland Species Research Group, publication no. 129  相似文献   
3.
Large grazers (megaherbivores) have a profound impact on ecosystem functioning. However, how ecosystem multifunctionality is affected by changes in megaherbivore populations remains poorly understood. Understanding the total impact on ecosystem multifunctionality requires an integrative ecosystem approach, which is especially challenging to obtain in marine systems. We assessed the effects of experimentally simulated grazing intensity scenarios on ecosystem functions and multifunctionality in a tropical Caribbean seagrass ecosystem. As a model, we selected a key marine megaherbivore, the green turtle, whose ecological role is rapidly unfolding in numerous foraging areas where populations are recovering through conservation after centuries of decline, with an increase in recorded overgrazing episodes. To quantify the effects, we employed a novel integrated index of seagrass ecosystem multifunctionality based upon multiple, well-recognized measures of seagrass ecosystem functions that reflect ecosystem services. Experiments revealed that intermediate turtle grazing resulted in the highest rates of nutrient cycling and carbon storage, while sediment stabilization, decomposition rates, epifauna richness, and fish biomass are highest in the absence of turtle grazing. In contrast, intense grazing resulted in disproportionally large effects on ecosystem functions and a collapse of multifunctionality. These results imply that (i) the return of a megaherbivore can exert strong effects on coastal ecosystem functions and multifunctionality, (ii) conservation efforts that are skewed toward megaherbivores, but ignore their key drivers like predators or habitat, will likely result in overgrazing-induced loss of multifunctionality, and (iii) the multifunctionality index shows great potential as a quantitative tool to assess ecosystem performance. Considerable and rapid alterations in megaherbivore abundance (both through extinction and conservation) cause an imbalance in ecosystem functioning and substantially alter or even compromise ecosystem services that help to negate global change effects. An integrative ecosystem approach in environmental management is urgently required to protect and enhance ecosystem multifunctionality.  相似文献   
4.
We have investigated the effects of magnetic fields on the formation and decay of excited states in the photochemical reaction centers of Rhodopseudomonas sphaeroides. In chemically reduced reaction centers, a magnetic field decreases the fraction of the transient state PF that decays by way of the bacteriochlorophyll triplet state PR. At room temperature, a 2-kG field decreases the quantum yield of PR by about 40%. In carotenoid-containing reaction centers, the yield of the carotenoid triplet state which forms via PR is reduced similarly. The effect of the field depends monotonically on field-strength, saturating at about 1 kG. The effect decreases at lower temperatures, when the yield of PR is higher. Magnetic fields do not significantly affect the formation of the triplet state of bacteriochlorophyll in vitro, the photooxidation of P-870 in reaction centers at moderate redox potential, or the decay kinetics of states PF and PR.The effects of magnetic fields support the view that state PF is a radical pair which is born in a singlet state but undergoes a rapid transformation into a mixture of singlet and triplet states. A simple kinetic model can account for the effects of the field and relate them to the temperature dependence of the yield of PR.  相似文献   
5.
6.
Hydrobiologia - Aquatic ecosystems provide vital services, and macrophytes play a critical role in their functioning. Conceptual models indicate that in shallow lakes, plants with different growth...  相似文献   
7.

Introduction

Mitotic Activity Index (MAI) is an important independent prognostic factor and an integral part of the breast cancer grading system. Thus, correct estimation of this prognostically relevant feature is essential for guiding treatment decision and assessing patient prognosis.The aim of this study was to validate the use of high resolution Whole Slide Images (WSI) in estimating MAI in breast cancer specimens.

Methods

MAI was evaluated in 100 consecutive breast cancer specimens by three observers on two occasions, microscopically and on WSI with a wash out period of 4 months. MAI was also translated to mitotic scores as in grading. Inter- and intra-observer agreement between microscopic and digital MAI counts and scores was measured.

Results

Almost perfect inter-observer agreements were obtained from counting MAI using a conventional microscope (intra-class correlation coefficient (ICCC) 0.879) as well as on WSI (ICCC 0.924). K coefficients reflected good inter-observer agreements among observers'' microscopic mitotic scores (average kappa 0.642). Comparable results were also observed among digital mitotic scores (average kappa 0.635). There was strong to perfect intra-observer agreements between MAI counts and mitotic scores for the two diagnostic modalities (ICCC 0.716–0.863, kappa 0.506–0.617). There were no significant differences in mitotic scores using both diagnostic modalities.

Conclusion

Scoring mitoses using WSI in breast cancer seems to be just as reliable and reproducible as when using a microscope. Further development of software and image quality will definitely encourage the use of WSI in routine pathology practice.  相似文献   
8.
Highlights? TBLR1 controls cAMP-dependent lipolysis in adipocytes ? Adipocyte-specific deletion of TBLR1 in mice impairs fasting-induced lipolysis ? Lack of TBLR1 in adipocytes aggravates diet-induced obesity and metabolic dysfunction ? TBLR1 mRNA levels in WAT are elevated under lipolytic conditions in mice and humans  相似文献   
9.

Background

There are concerns that metal-on-metal hip implants may cause cancer. The objective of this study was to evaluate patterns and timing of risk of cancer in patients with metal-on-metal total hip replacements (THR).

Methods

In a linkage study between the English National Joint Registry (NJR) and the Clinical Practice Research Datalink (CPRD), we selected all THR surgeries (NJR) between 2003 and 2010 (n = 11,540). THR patients were stratified by type of bearing surface. Patients were followed up for cancer and Poisson regression was used to derive adjusted relative rates (RR).

Results

The risk of cancer was similar in patients with hip resurfacing (RR 0.69; 95% Confidence Interval [CI] 0.39–1.22) or other types of bearing surfaces (RR 0.96; 95% CI 0.64–1.43) compared to individuals with stemmed metal-on-metal THR. The pattern of cancer risk over time did not support a detrimental effect of metal hip implants. There was substantial confounding: patients with metal-on-metal THRs used fewer drugs and had less comorbidity.

Conclusions

Metal-on-metal THRs were not associated with an increased risk of cancer. There were substantial baseline differences between the different hip implants, indicating possibility of confounding in the comparisons between different types of THR implants.  相似文献   
10.
Changes in the seascape often result in altered hydrodynamics that lead to coinciding changes in sediment dynamics. Little is known on how altered sediment dynamics affect long-term seagrass persistence. We studied the thresholds of sediment dynamics in relation to seagrass presence by comparing sediment characteristics and seagrass presence data of seven separate seagrass meadows. All meadows had a long-term (>20 years) presence. Within these meadows, we distinguish so-called “hotspots” (areas within a meadow where seagrass was found during all mapping campaigns) and “coldspots” (with infrequent seagrass presence). We monitored static sediment characteristics (median grain size, bulk density, silt content) and sediment dynamics (that is, bed level change and maximum sediment disturbance depth), bioturbation (that is, lugworm densities and induced fecal pit and mound relief), and seagrass cover. We statistically analyzed which sediment characteristic best explains seagrass cover. Densely vegetated hotspots were shown to have lower sediment dynamics than sparsely vegetated hotspots and coldspots, whereas static sediment characteristics were similar (grain size, bulk density). The vegetation cover was either low (2–15%) or high (>30%) and sediment dynamics showed a threshold for vegetation cover. From this correlative finding, we postulate a self-sustaining feedback of relatively dense seagrass via sediment stabilization and accordingly a runaway feedback once the seagrass cover becomes too sparse. The sensitivity for sediment dynamics shown in our study implies that future existence of seagrass meadows may be at risk as ongoing climate change might directly (increased environmental extremes) or indirectly (changing seascapes) negatively affect seagrass beds.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号