首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10篇
  免费   0篇
  2023年   1篇
  2022年   1篇
  2017年   1篇
  2015年   1篇
  2012年   1篇
  2009年   1篇
  2008年   1篇
  2005年   1篇
  1998年   1篇
  1993年   1篇
排序方式: 共有10条查询结果,搜索用时 203 毫秒
1
1.
The extracts of five invasive plants were investigated for antifungal and antibiofilm activities against Candida albicans, C. glabrata, C. krusei, and C. parapsilosis. The antifungal activity was evaluated using the microdilution assay and the antibiofilm effect by measurement of the metabolic activity. Ethanol and ethanol-water extracts of Reynoutria japonica leaves inhibited 50 % of planktonic cells at 250 μg mL−1 and 15.6 μg mL−1, respectively. Ethanol and ethanol-water extracts of Baccharis halimifolia inhibited >75 % of the mature biofilm of C. albicans at 500 μg mL−1. The essential oil (EO) of B. halimifolia leaves was the most active (50 % inhibition (IC50) at 4 and 74 μg mL−1against the maturation phase and 24 h old-biofilms of C. albicans, respectively). Oxygenated sesquiterpenes were the primary contents in this EO (62.02 %), with β-caryophyllene oxide as the major component (37 %). Aromadendrene oxide-(2), β-caryophyllene oxide, and (±)-β-pinene displayed significant activities against the maturation phase (IC50=9–310 μ mol l−1) and preformed 24 h-biofilm (IC50=38–630 μ mol l−1) of C. albicans with very low cytotoxicity for the first two compounds. C. albicans remained the most susceptible species to this EO and its components. This study highlighted for the first time the antibiofilm potential of B. halimifolia, its EO and some of its components.  相似文献   
2.
Human growth hormone (hGH) is not only a valuable recombinant therapeutic protein for hormone deficiency indications, but is also an extensively characterized molecule both from recombinant bacterial systems and as circulating in humans. We describe the characterization of hGH produced in three different plant systems: tobacco cell culture, soy seed, and maize seed. The data indicate highest production in the maize seed system, with continued productivity over multiple generations, and when bred to a new host genotype for improved productivity. Purification indicated significant material of the correct structure from both plant cell culture and maize seed, with maize seed also showing correct activity relative to that produced by Escherichia coli. However, all systems showed some proteolyzed hGH, with data from gel electrophoresis, mass spectrometry, and peptide mapping localizing to a region of the protein also prone to cleavage in some other systems. Together, the data indicate the dependence of recombinant protein accumulation on posttranslational processes in different host systems.  相似文献   
3.
International Microbiology - Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a new virus responsible for the COVID-19 pandemic. The emergence of the new SARS-CoV-2 has been...  相似文献   
4.
Transmission is a main route for bacterial contamination, involving bacterial detachment from a donor and adhesion to receiver surfaces. This work aimed to compare transmission of an extracellular polymeric substance (EPS) producing and a non-EPS producing Staphylococcus epidermidis strain from biofilms on stainless steel. After transmission, donor surfaces remained fully covered with biofilm, indicating transmission through cohesive failure in the biofilm. Counter to the numbers of biofilm bacteria, the donor and receiver biofilm thicknesses did not add up to the pre-transmission donor biofilm thickness, suggesting more compact biofilms after transmission, especially for non-EPS producing staphylococci. Accordingly, staphylococcal density per unit biofilm volume had increased from 0.20 to 0.52 μm–3 for transmission of the non-EPS producing strain under high contact pressure. The EPS producing strain had similar densities before and after transmission (0.17 μm–3). This suggests three phases in biofilm transmission: (1) compression, (2) separation and (3) relaxation of biofilm structure to its pre-transmission density in EPS-rich biofilms.  相似文献   
5.
ABSTRACT: BACKGROUND: Sabang Municipality, in Aceh Province, Indonesia, plans to initiate a malaria elimination programme in 2013. A baseline survey of the distribution of malaria in the municipality was conducted to lay the foundations for an evidence-based programme and to assess the island's readiness to begin the elimination process. METHODS: The entire population of the municipality was screened for malaria infection and G6PD deficiency. Specimens collected included blood slides, blots and tubes for selected households. Results and Discussion Samples were collected from 16,229 residents. Microscopic examination of the blood smears revealed 12 malaria infections; 10 with Plasmodium falciparum and 2 with Plasmodium vivax. To confirm the parasite prevalence, polymerase chain reaction (PCR) diagnosis was performed on the entire positive cases by microscopy and randomized 10% of the microscopically negative blood samples. PCR revealed an additional 11 subjects with malaria; one P. falciparum infection from the village of Paya Keunekai, and nine P. vivax infections and one mixed P. falciparum/P. vivax infection from the village of Batee Shok. The overall slide positivity rate was 0.074% (CI 95%: 0.070 - 0.078) and PCR corrected prevalence 0,590% (CI 95%: 0.582 - 0.597). Analysis of 937 blood samples for G6PD deficiency revealed two subjects (0.2%) of deficient G6PD. Analysis of several genes of the parasite, such as Pfdhfr, Pfdhps, Pfmdr1, Pfcrt, Pfmsp1, Pfmsp2, Pvdhfr, Pvdhps, Pvmdr1 and host gene, such as G6PD gene revealed that both P. falciparum and P. vivax carried the mutation associated with chloroquine resistance. CONCLUSION: Malariometric and host genetic analysis indicated that there is a low prevalence of both malaria and G6PD deficiency in the population of Sabang Municipality. Nevertheless, malaria cases were clustered in three rural villages and efforts for malaria elimination in Sabang should be particularly focused on those three villages.  相似文献   
6.
Phenotypic variation of Staphylococcus epidermidis involving the slime related ica operon results in heterogeneity in surface characteristics of individual bacteria in axenic cultures. Five clinical S. epidermidis isolates demonstrated phenotypic variation, i.e. both black and red colonies on Congo Red agar. Black colonies displayed bi-modal electrophoretic mobility distributions at pH 2, but such phenotypic variation was absent in red colonies of the same strain as well as in control strains without phenotypic variation. All red colonies had lost ica and the ability to form biofilms, in contrast to black colonies of the same strain. Real time PCR targeting icaA indicated a reduction in gene copy number within cultures exhibiting phenotypic variation, which correlated with phenotypic variations in biofilm formation and electrophoretic mobility distribution of cells within a culture. Loss of ica was irreversible and independent of the mobile element IS256. Instead, in high frequency switching strains, spontaneous mutations in lexA were found which resulted in deregulation of recA expression, as shown by real time PCR. RecA is involved in genetic deletions and rearrangements and we postulate a model representing a new mechanism of phenotypic variation in clinical isolates of S. epidermidis. This is the first report of S. epidermidis strains irreversibly switching from biofilm-positive to biofilm-negative phenotype by spontaneous deletion of icaADBC.  相似文献   
7.
Lyctus africanus is a cosmopolitan powder-post beetle that is considered one of the major pests threatening timber and timber products. Because infestations of this beetle are inconspicuous, damage is difficult to detect and identification is often delayed. We identified the chemical compounds involved in the aggregation behavior of L. africanus using preparations of crude hexanic extracts from male and female beetles (ME and FE, respectively). Both male and female beetles showed significant preferences for ME, which was found to contain three esters. FE was ignored by both the sexes. Further bioassay confirmed the role of esters in the aggregation behavior of L. africanus. Three esters were identified as 2-propyl dodecanoate, 3-pentyl dodecanoate, and 3-pentyl tetradecanoate. Further behavioral bioassays revealed 3-pentyl dodecanoate to play the main role in the aggregation behavior of female L. africanus beetles. However, significantly more beetles aggregated on a paper disk treated with a blend of the three esters than on a paper disk treated with a single ester. This is the first report on pheromone identification in L. africanus; in addition, the study for the first time presents 3-pentyl dodecanoate as an insect pheromone.  相似文献   
8.
Thirteen soybean plant introduction (PI) lines, selected for their apparent susceptibility to Heterodera glycines, were compared with cultivar Lee 74 as hosts of H. glycines races 1, 2, 3, and 4. Race 3 produced the highest average number of females of the four races. Compared to Lee 74, more (P = 0.05) females of H. glycines race 1 were extracted from eI 274420, PI 274423, and PI 317333; PI 86457 had more females of H. glycines race 2; and PI 86443, PI 86457, PI 261467, PI 274420, PI 274421, and PI 274423 had more females of H. glycines race 3. Similar numbers of females of H. glycines race 4 developed on all of the soybean lines and Lee 74. PI 274421, PI 274420, or PI 196159 could provide a more or equally susceptible host for H. glycines races 1, 2, 3, and 4 than Lee 74. One of these three lines could be substituted for Lee as the standard susceptible cultivar in the race determination test.  相似文献   
9.
Staphylococcus epidermidis is notorious for its biofilm formation on medical devices, and novel approaches to prevent and kill S. epidermidis biofilms are desired. In this study, the effect of cinnamon oil on planktonic and biofilm cultures of clinical S. epidermidis isolates was evaluated. Initially, susceptibility to cinnamon oil in planktonic cultures was compared to the commonly used antimicrobial agents chlorhexidine, triclosan, and gentamicin. The MIC of cinnamon oil, defined as the lowest concentration able to inhibit visible microbial growth, and the minimal bactericidal concentration, the lowest concentration required to kill 99.9% of the bacteria, were determined using the broth microdilution method and plating on agar. A checkerboard assay was used to evaluate the possible synergy between cinnamon oil and the other antimicrobial agents. The effect of cinnamon oil on biofilm growth was studied in 96-well plates and with confocal laser-scanning microscopy (CLSM). Biofilm susceptibility was determined using a metabolic 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay. Real-time PCR analysis was performed to determine the effect of sub-MIC concentrations of cinnamon oil on expression of the biofilm-related gene, icaA. Cinnamon oil showed antimicrobial activity against both planktonic and biofilm cultures of clinical S. epidermidis strains. There was only a small difference between planktonic and biofilm MICs, ranging from 0.5 to 1% and 1 to 2%, respectively. CLSM images indicated that cinnamon oil is able to detach and kill existing biofilms. Thus, cinnamon oil is an effective antimicrobial agent to combat S. epidermidis biofilms.Staphylococcus epidermidis is a gram-positive bacterium and an important agent of nosocomial infections worldwide. Treatment of these infections is increasingly problematic because of the resistance of clinical isolates to an increasing number of antimicrobial agents and, more importantly, due to its ability to grow as a biofilm. Biofilm formation by S. epidermidis (35) can be governed in part by the production of polysaccharide intercellular adhesin. Polysaccharide intercellular adhesin is produced by enzymes encoded by the ica operon which comprises four intercellular adhesion genes: icaA, icaB, icaC, and icaD. The expression of the ica operon and biofilm formation are tightly regulated by icaR under in vitro conditions (15). Biofilm formation can be influenced by changing environmental conditions, such as the presence of subinhibitory concentrations of antimicrobials like tetracycline and quinopristin-dalfopristin, as well as high temperatures, anaerobiosis, ethanol stress, and osmolarity (8, 9, 26, 37).Previous studies have demonstrated that microorganisms within biofilms are less susceptible to antimicrobial treatment than their planktonic counterparts (4), probably due to a combination of poor antimicrobial penetration, nutrient limitation, adaptive stress responses, induction of phenotypic variability, and persister cell formation (28). For this reason, current research has been focused on identifying new compounds that have antimicrobial activity against microorganisms, both in planktonic and biofilm modes of growth. Plant essential oils have been used in food preservation, pharmaceutical therapies, alternative medicine, and natural therapies for many thousands of years (23, 36).Cinnamon oil is one of the essential oils commonly used in the food industry because of its special aroma (6). Cinnamomum is a genus in the family Lauraceae, many species of which are used for spices. One of the species is Cinnamomum burmannii from Indonesia, also called Indonesian cassia (the commercial name is “cinnamon stick”). Several publications have demonstrated the antibacterial activity of cinnamon oil isolated from the bark of this species (12, 18, 22, 39). Cinnamon oil was also shown to be effective against biofilm cultures of Streptococcus mutans and Lactobacillus plantarum (14). In addition, essential oil derived from the leaves of another closely related species within this plant family, Cinnamomum osmophloeum (endemic to Taiwan), had an excellent inhibitory effect on planktonic cultures of nine gram-positive and gram-negative bacteria, including methicillin-resistant Staphylococcus aureus and S. epidermidis (6). Previous studies reported that the predominant active compound found in cinnamon oil was cinnamaldehyde (36, 39). Cinnamaldehyde causes inhibition of the proton motive force, respiratory chain, electron transfer, and substrate oxidation, resulting in uncoupling of oxidative phosphorylation, inhibition of active transport, loss of pool metabolites, and disruption of synthesis of DNA, RNA, proteins, lipids, and polysaccharides (11, 13, 33). In addition, an important characteristic of volatile oils and their components is their hydrophobicity, which enables them to partition into and disturb the lipid bilayer of the cell membrane, rendering them more permeable to protons. Extensive leakage from bacterial cells or the exit of critical molecules and ions ultimately leads to bacterial cell death (36).The susceptibility of S. epidermidis to cinnamon oil derived from the bark of Cinnamomum burmannii, however, has never been published, neither for planktonic organisms nor for staphylococci in a biofilm mode of growth. Hence, the current study was undertaken to establish the efficacy of this oil as an antimicrobial agent against clinical S. epidermidis isolates in planktonic and biofilm cultures. Chlorhexidine, triclosan, and gentamicin were used as positive controls in addition to examination of possible synergistic effects by combining cinnamon oil with any of these clinically used antimicrobials.  相似文献   
10.
Distribution of cyclic imide-transforming activity in microorganisms   总被引:4,自引:0,他引:4  
Cyclic imide-transforming activity was found to be widely distributed in bacteria, yeast and molds. This activity was not correlated with cyclic ureide-transforming activity in bacteria, but there was some correlation in yeast and molds. These two activities are probably catalyzed by different enzymes in bacteria. Besides the well-known cyclic ureide transformation, cyclic imide transformation by microorganisms was common.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号