首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   34214篇
  免费   2859篇
  国内免费   3494篇
  2024年   61篇
  2023年   426篇
  2022年   570篇
  2021年   1825篇
  2020年   1285篇
  2019年   1536篇
  2018年   1459篇
  2017年   1067篇
  2016年   1438篇
  2015年   2148篇
  2014年   2530篇
  2013年   2638篇
  2012年   3299篇
  2011年   2942篇
  2010年   1845篇
  2009年   1683篇
  2008年   1849篇
  2007年   1639篇
  2006年   1435篇
  2005年   1328篇
  2004年   1031篇
  2003年   930篇
  2002年   800篇
  2001年   563篇
  2000年   551篇
  1999年   483篇
  1998年   365篇
  1997年   309篇
  1996年   301篇
  1995年   266篇
  1994年   290篇
  1993年   184篇
  1992年   210篇
  1991年   187篇
  1990年   153篇
  1989年   144篇
  1988年   110篇
  1987年   108篇
  1986年   78篇
  1985年   83篇
  1984年   74篇
  1983年   52篇
  1982年   46篇
  1981年   28篇
  1980年   18篇
  1979年   24篇
  1977年   16篇
  1974年   16篇
  1972年   16篇
  1971年   14篇
排序方式: 共有10000条查询结果,搜索用时 877 毫秒
1.
2.
W C Wong  S H Tan  T Y Yick  E A Ling 《Acta anatomica》1990,138(4):318-326
The ultrastructure of the interstitial cells of Cajal (ICC) in the oesophagus of the monkey resembled that described in the oesophagus of other mammalian species but differed in their paucity and almost lack of smooth endoplasmic reticulum, caveolae and filaments. The plasmalemma of the ICC was in close contact (20- to 30-nm gaps) with that of smooth muscle cells. This may occasionally take the form of a desmosome, but gap junctions have not been observed. Vesiculated axon profiles, containing large granular or agranular vesicles were in close contact (20- to 30-nm gaps) with the plasmalemma of ICC. In a few vesiculated profiles a presynaptic density could be recognized. The intercalation of the ICC between the vesiculated axon profiles and the smooth muscle cells suggest a role in oesophageal motility. Between 3 and 21 days following bilateral vagotomy some ICC showed regressive changes such as increased electron density and shrinkage of the cytoplasm, crowding of the organelles and dissolution of the nuclear chromatin material. Axon profiles in the vicinity of the affected ICC contained glycogen granules suggesting injury. In late stages, the number of ICC and smooth muscle contacts was reduced. The results suggest that the vagus nerves exert a trophic influence on the ICC and that the intercellular relationships between ICC and smooth muscle cells possess a degree of plasticity. It is tentatively suggested that these vagal effects may be mediated via the oesophageal myenteric ganglia.  相似文献   
3.
4.
Previously, we confirmed that sphingosine kinase 1 (SphK1) inhibition improves sepsis-associated liver injury. High-mobility group box 1 (HMGB1) translocation participates in the development of acute liver failure. However, little information is available on the association between SphK1 and HMGB1 translocation during sepsis-associated liver injury. In the present study, we aimed to explore the effect of SphK1 inhibition on HMGB1 translocation and the underlying mechanism during sepsis-associated liver injury. Primary Kupffer cells and hepatocytes were isolated from SD rats. The rat model of sepsis-associated liver damage was induced by intraperitoneal injection with lipopolysaccharide (LPS). We confirmed that Kupffer cells were the cells primarily secreting HMGB1 in the liver after LPS stimulation. LPS-mediated HMGB1 expression, intracellular translocation, and acetylation were dramatically decreased by SphK1 inhibition. Nuclear histone deacetyltransferase 4 (HDAC4) translocation and E1A-associated protein p300 (p300) expression regulating the acetylation of HMGB1 were also suppressed by SphK1 inhibition. HDAC4 intracellular translocation has been reported to be controlled by the phosphorylation of HDAC4. The phosphorylation of HDAC4 is modulated by CaMKII-δ. However, these changes were completely blocked by SphK1 inhibition. Additionally, by performing coimmunoprecipitation and pull-down assays, we revealed that SphK1 can directly interact with CaMKII-δ. The colocalization of SphK1 and CaMKII-δ was verified in human liver tissues with sepsis-associated liver injury. In conclusion, SphK1 inhibition diminishes HMGB1 intracellular translocation in sepsis-associated liver injury. The mechanism is associated with the direct interaction of SphK1 and CaMKII-δ.Subject terms: Hepatotoxicity, Sepsis  相似文献   
5.
6.
7.
8.
COVID-19, caused by SARS-CoV-2, is an acute and rapidly developing pandemic, which leads to a global health crisis. SARS-CoV-2 primarily attacks human alveoli and causes severe lung infection and damage. To better understand the molecular basis of this disease, we sought to characterize the responses of alveolar epithelium and its adjacent microvascular endothelium to viral infection under a co-culture system. SARS-CoV-2 infection caused massive virus replication and dramatic organelles remodeling in alveolar epithelial cells, alone. While, viral infection affected endothelial cells in an indirect manner, which was mediated by infected alveolar epithelium. Proteomics analysis and TEM examinations showed viral infection caused global proteomic modulations and marked ultrastructural changes in both epithelial cells and endothelial cells under the co-culture system. In particular, viral infection elicited global protein changes and structural reorganizations across many sub-cellular compartments in epithelial cells. Among the affected organelles, mitochondrion seems to be a primary target organelle. Besides, according to EM and proteomic results, we identified Daurisoline, a potent autophagy inhibitor, could inhibit virus replication effectively in host cells. Collectively, our study revealed an unrecognized cross-talk between epithelium and endothelium, which contributed to alveolar–capillary injury during SARS-CoV-2 infection. These new findings will expand our understanding of COVID-19 and may also be helpful for targeted drug development.Subject terms: Mechanisms of disease, Viral infection  相似文献   
9.
Plasma concentrations of adrenaline and noradrenaline were measured at rest from cannulated fish and following net capture. Adrenaline and noradrenaline concentrations in capture-stressed fish averaged 36,740 pmol l-1 and 38,860 pmol l-1 respectively, whereas resting values were less than 200 pmol l-1 for both amines. Erythrocyte swelling and raised blood lactate were evident in stressed fish. In vitro effects of 5 mmol l-1 adrenaline on erythrocyte suspensions suggested that the catecholamine had a direct effect on erythrocyte volume. The significance of these results is discussed in relation to the oxygen transport properties of the blood.  相似文献   
10.
Molecular dynamics (MD) simulations of phosphatidylinositol (4,5)-bisphosphate (PIP2) and phosphatidylinositol (3,4,5)-trisphosphate (PIP3) in 1-palmitoyl 2-oleoyl phosphatidylcholine (POPC) bilayers indicate that the inositol rings are tilted ∼40° with respect to the bilayer surface, as compared with 17° for the P-N vector of POPC. Multiple minima were obtained for the ring twist (analogous to roll for an airplane). The phosphates at position 1 of PIP2 and PIP3 are within an Ångström of the plane formed by the phosphates of POPC; lipids in the surrounding shell are depressed by 0.5-0.8 Å, but otherwise the phosphoinositides do not substantially perturb the bilayer. Finite size artifacts for ion distributions are apparent for systems of ∼26 waters/lipid, but, based on simulations with a fourfold increase of the aqueous phase, the phosphoinositide positions and orientations do not show significant size effects. Electrostatic potentials evaluated from Poisson-Boltzmann (PB) calculations show a strong dependence of potential height and ring orientation, with the maxima on the −25 mV surfaces (17.1 ± 0.1 Å for PIP2 and 19.4 ± 0.3 Å for PIP3) occurring near the most populated orientations from MD. These surfaces are well above the background height of 10 Å estimated for negatively charged cell membranes, as would be expected for lipids involved in cellular signaling. PB calculations on microscopically flat bilayers yield similar maxima as the MD-based (microscopically rough) systems, but show less fine structure and do not clearly indicate the most probable regions. Electrostatic free energies of interaction with pentalysine are also similar for the rough and flat systems. These results support the utility of a rigid/flat bilayer model for PB-based studies of PIP2 and PIP3 as long as the orientations are judiciously chosen.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号