首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   28960篇
  免费   2266篇
  国内免费   2264篇
  2024年   55篇
  2023年   357篇
  2022年   463篇
  2021年   1649篇
  2020年   1115篇
  2019年   1330篇
  2018年   1297篇
  2017年   975篇
  2016年   1311篇
  2015年   1826篇
  2014年   2172篇
  2013年   2338篇
  2012年   2684篇
  2011年   2430篇
  2010年   1511篇
  2009年   1343篇
  2008年   1520篇
  2007年   1342篇
  2006年   1151篇
  2005年   992篇
  2004年   772篇
  2003年   716篇
  2002年   590篇
  2001年   427篇
  2000年   432篇
  1999年   427篇
  1998年   272篇
  1997年   253篇
  1996年   230篇
  1995年   231篇
  1994年   227篇
  1993年   150篇
  1992年   195篇
  1991年   144篇
  1990年   131篇
  1989年   106篇
  1988年   69篇
  1987年   60篇
  1986年   45篇
  1985年   55篇
  1984年   23篇
  1983年   21篇
  1982年   22篇
  1981年   8篇
  1980年   8篇
  1979年   6篇
  1978年   3篇
  1975年   3篇
  1966年   1篇
  1950年   2篇
排序方式: 共有10000条查询结果,搜索用时 171 毫秒
1.
2.
3.
The 5'-end region of cspA mRNA contains a Cold Box sequence conserved among several cold-shock mRNAs. This region forms a stable stem-loop structure followed by an AU-rich sequence. Here we show that the Cold Box region is essential for the normal scale of cspA mRNA induction after cold shock because a deletion of the stem-loop significantly destabilizes the mRNA and reduces the cold shock-induced cspA mRNA amount by approximately 50%. The AU-rich track, however, slightly destabilizes the mRNA. The integrity of the stem is essential for the stabilizing function, whereas that of the loop sequence is less important. Overexpression of a mutant cspA mRNA devoid of both the AUG initiation codon and the coding sequence results in a severe growth inhibition at low temperature along with a derepression of the chromosomal cspA expression. Furthermore, the overexpressed RNA is stably associated with the 30 S and 70 S ribosomes. Our results demonstrate that the AUG initiation codon and the coding region containing the downstream box are not required for cspA mRNA to bind ribosomes and that the 5'-untranslated region by itself has a remarkable affinity to ribosomes at low temperature.  相似文献   
4.
Previously, we confirmed that sphingosine kinase 1 (SphK1) inhibition improves sepsis-associated liver injury. High-mobility group box 1 (HMGB1) translocation participates in the development of acute liver failure. However, little information is available on the association between SphK1 and HMGB1 translocation during sepsis-associated liver injury. In the present study, we aimed to explore the effect of SphK1 inhibition on HMGB1 translocation and the underlying mechanism during sepsis-associated liver injury. Primary Kupffer cells and hepatocytes were isolated from SD rats. The rat model of sepsis-associated liver damage was induced by intraperitoneal injection with lipopolysaccharide (LPS). We confirmed that Kupffer cells were the cells primarily secreting HMGB1 in the liver after LPS stimulation. LPS-mediated HMGB1 expression, intracellular translocation, and acetylation were dramatically decreased by SphK1 inhibition. Nuclear histone deacetyltransferase 4 (HDAC4) translocation and E1A-associated protein p300 (p300) expression regulating the acetylation of HMGB1 were also suppressed by SphK1 inhibition. HDAC4 intracellular translocation has been reported to be controlled by the phosphorylation of HDAC4. The phosphorylation of HDAC4 is modulated by CaMKII-δ. However, these changes were completely blocked by SphK1 inhibition. Additionally, by performing coimmunoprecipitation and pull-down assays, we revealed that SphK1 can directly interact with CaMKII-δ. The colocalization of SphK1 and CaMKII-δ was verified in human liver tissues with sepsis-associated liver injury. In conclusion, SphK1 inhibition diminishes HMGB1 intracellular translocation in sepsis-associated liver injury. The mechanism is associated with the direct interaction of SphK1 and CaMKII-δ.Subject terms: Hepatotoxicity, Sepsis  相似文献   
5.
We present a time‐calibrated phylogeny of the charismatic green lacewings (Neuroptera: Chrysopidae). Previous phylogenetic studies on the family using DNA sequences have suffered from sparse taxon sampling and/or limited amounts of data. Here we combine all available previously published DNA sequence data and add to it new DNA sequences generated for this study. We analysed these data in a supermatrix using Bayesian and maximum likelihood methods and provide a phylogenetic hypothesis for the family that recovers strong support for the monophyly of all subfamilies and resolves relationships among a large proportion of chrysopine genera. Chrysopinae tribes Leucochrysini and Belonopterygini were recovered as monophyletic sister clades, while the species‐rich tribe Chrysopini was rendered paraphyletic by Ankylopterygini. Relationships among the subfamilies were resolved, although with relatively low statistical support, and the topology varied based on the method of analysis. Greatest support was found for Apochrysinae as sister to Nothochrysinae and Chrysopinae, which is in contrast to traditional concepts that place Nothochrysinae as sister to the rest of the family. Divergence estimates suggest that the stem groups to the various subfamilies diverged during the Triassic‐Jurassic, and that stem groups of the chrysopine tribes diverged during the Cretaceous.  相似文献   
6.
7.
8.
How do vertebrate epithelial appendages form from the flat epithelia? Following the formation of feather placodes, the previously radially symmetrical primordia become anterior-posterior (A-P) asymmetrical and develop a proximo-distal (P-D) axis. Analysis of the molecular heterogeneity revealed a surprising parallel of molecular profiles in the A-P feather buds and the ventral-dorsal (V-D) Drosophila appendage imaginal discs. The functional significance was tested with an in vitro feather reconstitution model. Wnt-7a expression initiated all over the feather tract epithelium, intensifying as it became restricted first to the primordia domain, then to an accentuated ring pattern within the primordia border, and finally to the posterior bud. In contrast, sonic hedgehog expression was induced later as a dot within the primordia. RCAS was used to overexpress Wnt-7a in reconstituted feather explants derived from stage 29 dorsal skin to further test its function in feather formation. Control skin formed normal elongated, slender buds with A-P orientation, but Wnt-7a overexpression led to plateau-like skin appendages lacking an A-P axis. Feathers in the Wnt-7a overexpressing skin also had inhibited elongation of the P-D axes. This was not due to a lack of cell proliferation, which actually was increased although randomly distributed. While morphogenesis was perturbed, differentiation proceeded as indicated by the formation of barb ridges. Wnt-7a buds have reduced expression of anterior (Tenascin) bud markers. Middle (Notch-1) and posterior bud markers including Delta-1 and Serrate-1 were diffusely expressed. The results showed that ectopic Wnt-7a expression enhanced properties characteristic of the middle and posterior feather buds and suggest that P-D elongation of vertebrate skin appendages requires balanced interactions between the anterior and posterior buds.  相似文献   
9.
Gabapentin (GBP) is a new antiepileptic drug approved for clinical treatment of partial seizures in the USA. Serum GBP concentrations in 283 patients were studied using high-performance liquid chromatography with fluorescence detection. The standard curves were linear over a range of 60 ng to 15 μg/ml. The coefficient of variations were 3.4 to 8.8% and 1.4 to 9.8% for intra- and inter-assay studies, respectively. The lower limit of quantitation was 10 ng/ml. Of the 283 patients studied, 72.5% had GBP levels between 2 and 10 μg/ml, 14.8% were below 2 μg/ml and 12.7% above 10 μg/ml. The mean±S.E. of GBP in 283 patients was 5.38±0.23 μg/ml. Peak concentrations of more than 15 μg/ml and trough levels as low as 0.1 μg/ml were not uncommon. The method described was rapid, simple, highly sensitive and reproducible. Other antiepileptic drugs and endogenous compounds did not interfere with the assay.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号