首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
  2022年   1篇
  2020年   1篇
  2016年   1篇
  2011年   1篇
  2001年   1篇
排序方式: 共有5条查询结果,搜索用时 140 毫秒
1
1.
Biochemical Genetics - The study aimed to evaluate the contribution of the FTO A/T polymorphism (rs9939609) to the prediction of the future type 2 diabetes (T2D). A population-based prospective...  相似文献   
2.
The thymus is the site of T cell development and selection. In addition to lymphocytes, the thymus is composed of several types of stromal cells that are exquisitely organized to create the appropriate environment and microenvironment to support the development and selection of maturing T cells. Thymic epithelial cells (TECs) are one of the more important cell types in the thymic stroma, and they play a critical role in selecting functional T cell clones and supporting their development. In this study, we used a mouse genetics approach to investigate the consequences of deleting the Pten tumor suppressor gene in the TEC compartment of the developing thymus. We found that PTEN deficiency in TECs results in a smaller thymus with significantly disordered architecture and histology. Accordingly, loss of PTEN function also results in decreased T cells with a shift in the distribution of T cell subtypes towards CD8+ T cells. These experiments demonstrate that PTEN is critically required for the development of a functional thymic epithelium in mice. This work may help better understand the effects that certain medical conditions or clinical interventions have upon the thymus and immune function.  相似文献   
3.
Candida albicans is a major fungal pathogen, accounting for approximately 15% of healthcare infections with associated mortality as high as 40% in the case of systemic candidiasis. Antifungal agents for C. albicans infections are limited, and rising resistance is an inevitable problem. Therefore, understanding the mechanism behind antifungal responses is among the top research focuses in combating Candida infections. Herein, the recently developed C. albicans haploid model is employed to examine the association between mitochondrial fission, regulated by Dnm1, and the pathogen's response to antifungals. Proteomic analysis of dnm1Δ and its wild‐type haploid parent, GZY803, reveal changes in proteins associated with mitochondrial structures and functions, cell wall, and plasma membrane. Antifungal susceptibility testing revealed that dnm1Δ is more susceptible to SM21, a novel antifungal, than GZY803. Analyses of reactive oxygen species release, antioxidant response, lipid peroxidation, and membrane damages uncover an association between dnm1Δ and the susceptibility to SM21. Dynasore‐induced mitochondrial inhibition in SC5314 diploids corroborate the findings. Interestingly, Dynasore‐primed SC5314 cultures exhibit increased susceptibility to all antifungals tested. These data suggest an important contribution of mitochondrial fission in antifungal susceptibility of C. albicans. Hence, mitochondrial fission can be a potential target for combined therapy in anti‐C. albicans treatment.  相似文献   
4.
5.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号