首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   42篇
  免费   8篇
  2014年   1篇
  2013年   1篇
  2008年   1篇
  2007年   1篇
  2004年   3篇
  2003年   1篇
  2002年   2篇
  2001年   4篇
  1999年   1篇
  1998年   1篇
  1997年   3篇
  1996年   2篇
  1994年   2篇
  1992年   2篇
  1991年   2篇
  1990年   1篇
  1988年   3篇
  1987年   1篇
  1986年   3篇
  1985年   2篇
  1984年   2篇
  1982年   3篇
  1980年   3篇
  1977年   2篇
  1976年   1篇
  1974年   1篇
  1973年   1篇
排序方式: 共有50条查询结果,搜索用时 31 毫秒
1.
Lipid peroxidation in Peridinium samples taken from two differentdepths in Lake Kinneret fluctuated throughout the spring withan overall increasing trend. Samples from 0.5 and 5 m showeda similar peroxidation pattern, which was maximal after thefall off in algal biomass. The rapid decline in Peridinium biomasscoincided with ambient lake temperatures of 21–23C. Fattyacid composition profiles were similar at both depths, althoughafter the peak of the bloom, a significant increase in polyunsaturatedfatty acids and oleic acid was only found at 0.5 m, togetherwith a decrease in the percentage of polyunsaturated fatty acids.These effects were related to ambient light stress rather thana result of lipid peroxidation. Lake samples taken at differentperiods of the bloom and incubated at various temperatures showeddifferential peroxidation. Higher temperatures caused increasedlipid peroxidation, but this appeared to be dependent on thesampling period. Samples withdrawn from the lake at the beginningof the bloom showed little peroxidation after a 5 day incubationat 14C, room temperature (25C) or ambient lake temperature(16C) compared to mid-bloom samples in which there was a significantincrease in peroxidation when they were incubated at room temperature(25C) or ambient lake temperature (22C). Incubation at 14Cinhibited peroxidation; however, samples from mid-bloom againshowed enhanced peroxidation compared with those from the beginningof the bloom. These in situ results suggested a relationshipbetween temperature, another environmental variable during thebloom and lipid peroxidation in Peridinium. As total dissolvedinorganic carbon (DIC) concentrations fall significantly duringthe progress of the bloom and represent an important sourceof environmental stress, laboratory experiments were establishedto investigate the synergistic effect of temperature and carbonnutrition on lipid peroxidation in Peridinium cultures. Increasedtemperature alone caused a slight increase in lipid peroxidation,but this was greatly augmented by carbon limitation. Althoughcarbon limitation induced increased catalase activity, at highertemperatures activity declined after 48 h, allowing for thesubstantial increase in lipid peroxidation.  相似文献   
2.
Oxidative stress responses were tested in the unicellular cyanobacterium Synechococcus PCC 7942 (R2). Cells were exposed to hydrogen peroxide, cumene hydroperoxide and high light intensities. Activities of ascorbate peroxidase and catalase were correlated with the extent and time-course of oxidative stresses. Ascorbate peroxidase was found to be the major enzyme involved in the removal of hydrogen peroxide under the tested oxidative stresses. Catalase activity was inhibited in cells treated with high H2O2 concentrations, and was not induced under photo-oxidative stress. Regeneration of ascorbate in peroxide-treated cells was found to involve mainly monodehydroascorbate reductase and to a lesser extent dehydroascorbate reductase. The induction of the antioxidative enzymes was dependent on light and was inhibited by chloramphenicol. Peroxide treatment was found to induce the synthesis of eight proteins, four of which were also induced by heat shock.Abbreviations ASC ascorbate - DHA dehydroascorbate - MDA monodehydroascorbate - GSH reduced glutathione - GSSG oxidized glutathione - ASC Per ascorbate peroxidase - DHA red. dehydroascorbate reductase - MDA red. monodehydroascorbate reductase - GSSG red. glutathione reductase - HSP heat shock proteins - PSP peroxide shock proteins - Cm chloramphenicol  相似文献   
3.
Plasma membranes of the marine cyanobacterium Spirulina subsalsa were tested for ATPase activity, and for involvement in salt stress. Transition of cells from saline to hypersaline medium enhances the respiratory activity associated with extrusion of Na+ and Cl, and persisting salt stress induces synthesis of respiratory enzymes in the plasma membranes. The membranes possess an ATPase, specific for ATP and Mg2+ and sensitive to orthovanadate and dicyclohexylcarbodiimide. Immunoblot analysis of plasma membrane polypeptides from Spirulina subsalsa with anti- Arabidopsis H+-ATPase serum identified a single polypeptide of 100 kDa, which cross-reacted with the antibodies. An unusual feature of this ATPase is a specific stimulation by Na+ ions. Prolonged adaptation of S. subsals cells to hypersaline conditions induced an increase in ATPase activity in subsequent plasma membrane preparations, as well as a higher content of the 100 kDa polypeptide. It is suggested that the ATPase investigated is an H+-pump, which is involved in extrusion of Na+ and in conferring resistance to salt stress.  相似文献   
4.
Physiological aspects of salt-adaptation in the cyanobacterium Synechococcus 6311 growing in a continuous culture (turbidostat) were studied. The process of salt-adaptation was completed within 3 days, as expressed by the specific growth rate of cells grown in the presence of 0.2 and 0.4 molar NaCl. An increase in photosynthetic activity during the adaptation period leads to the accumulation of soluble sugars, essential for osmoregulation in the salt-grown cells. Cells grown in the presence of 0.4 molar NaCl showed an initial inhibition in the rate of protein synthesis which was enhanced after the 1st day of salt stress. After adaptation, salt-grown cells showed an increase in phycobiliprotein synthesis and a higher phycobiliprotein to protein ratio.  相似文献   
5.
Elisha Tel-Or  Shmuel Malkin 《BBA》1977,459(2):157-174
The photochemical activities and fluorescence properties of cells, spheroplasts and spheroplast particles from the blue-green alga Phormidium luridum were compared. The photochemical activities were measured in a whole range of wavelengths and expressed as quantum yield spectra (quantum yield vs. wavelength). The following reactions were measured: Photosynthesis (O2 evolution) in whole cells; Hill reaction (O2 evolution) with Fe(CN)63? and NADP as electron acceptors (Photosystem II and Photosystem II+Photosystem I reactions); electron transfer from reduced 2,6-dichlorophenolindophenol to diquat (Photosystem I reaction). The fluorescence properties were emission spectra, quantum yield spectra and the induction pattern.On the basis of comparison between the quantum yield spectra and the pigments compositions the relative contribution of each pigment to each photosystem was estimated. In normal cells and spheroplasts it was found that Photosystem I (Photosystem II) contains about 90 % (10 %) of the chlorophyll a, 90 % (10 %) of the carotenoids and 15 % (85 %) of the phycocyanin. In spheroplast particles there is a reorganization of the pigments: they loose a certain fraction (about half) of the phycocyanin but the remaining phycocyanin attaches itself exclusively to Photosystem I (!). This is reflected by the loss of Photosystem II activity, a flat quantum yield vs. wavelength dependence and a loss of the fluorescence induction.The fluorescence quantum yield spectra conform qualitatively to the above conclusion. More quantitative estimation shows that only a fraction (20–40 %) of the chlorophyll of Photosystem II is fluorescent. Total emission spectrum and the ratio of variable to constant fluorescence are in agreement with this conclusion.The fluorescence emission spectrum shows characteristic differences between the constant and variable components. The variable fluorescence comes exclusively from chlorophyll a; the constant fluorescence is contributed, in addition to chlorophyll a, by phycocyanine and an unidentified long wavelength component.The variable fluorescence does not change in the transition from whole cells to spheroplasts. However, the constant fluorescence increases considerably. This indicates the release of a small fraction of pigments from the photosynthetic photochemical apparatus which then become fluorescent.  相似文献   
6.
E. Tel-Or 《Plant biosystems》2013,147(1):224-230
Abstract

The development of effective strategies to rehabilitate compromised environments is one of the major challenges facing the postindustrial society, since most of the habitats are becoming progressively polluted due to indiscriminate discharge of contaminants generated by anthropogenic activities. Several aquatic photosynthetic organisms can be used to treat wastewaters in primary and tertiary treatments, including cyanobacteria, algae and higher plants. In this review, we summarize the results obtained in the remediation of polluted waters by photosynthetic organisms and discuss the future perspective of phytoremediation.  相似文献   
7.
Lavid N  Barkay Z  Tel-Or E 《Planta》2001,212(3):313-322
This study investigates the anatomical aspects of heavy-metal accumulation in the waterlily (Nymphaea `Aurora', Nymphaeaceae). Epidermal glands were identified by light microscopy on the abaxial side of the leaf laminae and on the epidermis of the rhizome; glandular trichomes were observed in the petiole epidermis. Glands were not observed in the roots. Accumulation of heavy metals in these glands was monitored using a scanning electron microscope equipped for energy-dispersive spectroscopy. Further experiments showed maximal cadmium and calcium accumulation in the mature leaf lamina in daylight, and this accumulation was inhibited by the herbicide 3-(3′,4′-dichlorophenyl)-1,1-dimethylurea. These results suggest that, in Nymphaea, heavy metals are accumulated primarily in association with glands found in plant organs that have direct contact with water or mud. Deposition and storage of heavy metals by these glands may represent a stage in the sequestration and detoxification of the metals. Our results raise the possibility of utilizing waterlilies for the removal of heavy metals from polluted environments. Received: 29 April 2000 / Accepted: 8 June 2000  相似文献   
8.
Analysis of the three-dimensional structures of three closely related mesophilic, thermophilic, and hyperthermophilic alcohol dehydrogenases (ADHs) from the respective microorganisms Clostridium beijerinckii (CbADH), Entamoeba histolytica (EhADH1), and Thermoanaerobacter brockii (TbADH) suggested that a unique, strategically located proline residue (Pro100) might be crucial for maintaining the thermal stability of EhADH1. To determine whether proline substitution at this position in TbADH and CbADH would affect thermal stability, we used site-directed mutagenesis to replace the complementary residues in both enzymes with proline. The results showed that replacing Gln100 with proline significantly enhanced the thermal stability of the mesophilic ADH: DeltaT(1/2) (60 min) = + 8 degrees C (temperature of 50% inactivation after incubation for 60 min), DeltaT(1/2) (CD) = +11.5 degrees C (temperature at which 50% of the original CD signal at 218 nm is lost upon heating between 30 degrees and 98 degrees C). A His100 --> Pro substitution in the thermophilic TbADH had no effect on its thermostability. An analysis of the three-dimensional structure of the crystallized thermostable mutant Q100P-CbADH suggested that the proline residue at position 100 stabilized the enzyme by reinforcing hydrophobic interactions and by reducing the flexibility of a loop at this strategic region.  相似文献   
9.
Lead accumulation in the aquatic fern Azolla filiculoides.   总被引:2,自引:0,他引:2  
In this study, we characterized lead (Pb2+) accumulation and storage by the aquatic fern Azolla filiculoides. Lead precipitates were detected in the vacuoles of mesophyll cells of Azolla plants cultured for 6 d in rich growth medium containing 20 mg l(-1) Pb2+. Energy dispersive spectroscopy (EDS) analysis of the relative element content of leaves collected from these plants revealed a 100% increase in the levels of P, S, Na and Ca and a 40% decrease in Mg and Cl compared to the untreated plants. Both Azolla whole plants and isolated apoplasts were incubated for 6 d in 20 mg l(-1) Pb2+. Lead content in the whole plant composed 0.37%, 2.3% and 1.8% of the dry weight after 2, 4 and 6 d of growth, respectively, while the isolated Azolla apoplast contained 0.125%, 1.22% and 1.4% Pb2+, respectively. Lead content in Azolla whole plant increase by 200%, 100% and 22% after 2, 4 and 6 d of growth, respectively, when compared to Azolla apoplast. Dark, electron dense deposits of lead were observed in light and transmission electron microscope in leaf cells treated with lead. All the observed lead deposits were localized in vacuoles while larger lead deposits were found in mature leaves than in young leaves. No lead deposits were found in cells of the cyanobiont Anabaena when the plants were exposed to similar conditions. Activity and content of V-H+-ATPase were studied in Azolla plants grown in the presence of 20, 40 and 80 mg l(-1) of lead for a period of 4 d. Activity of V-H+-ATPase was increased by 190%, 210% and 220%, respectively, but the content of V-H+-ATPase was reduced by all lead concentrations.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号