首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   36篇
  免费   4篇
  2020年   1篇
  2017年   1篇
  2016年   2篇
  2015年   1篇
  2014年   3篇
  2013年   5篇
  2012年   2篇
  2011年   2篇
  2009年   2篇
  2008年   2篇
  2007年   2篇
  2006年   5篇
  2005年   2篇
  2004年   2篇
  2003年   2篇
  2001年   3篇
  1990年   1篇
  1984年   1篇
  1979年   1篇
排序方式: 共有40条查询结果,搜索用时 15 毫秒
1.
Six transplantable large granular lymphocyte (LGL) tumor lines in F344 rats were examined for natural killer (NK) and antibody-dependent cell-mediated cytotoxicity. Tumor cells from all six lines were highly cytotoxic, even at low effector to target ratios, when tested against NK-susceptible targets, but were unreactive against an NK-resistant target (C58NT)D) and a macrophage-susceptible target (P815). Three lines showed significant levels of lysis against antibody-coated tumor cells. After in vivo transplantation, the levels of cytotoxicity steadily increased in three lines and decreased in one. The cytotoxic activity of one line (RNK-16) remained high through 12 transplant generations. Tumor cells injected i.p. spread via the lymphatics to regional lymph nodes, mediastinal nodes, blood, and eventually the bone marrow. Leukemia occurred concurrently with organ enlargement and increased levels of NK. Studies in (F344 X W/Fu)F1 rats clearly demonstrated that the cytotoxic cells from leukemic animals were the transplanted tumor cells themselves and not merely the activation of normal host LGL. These results demonstrate that naturally occurring, transplantable LGL leukemias are an easily obtainable and excellent source of materials for those studies requiring a large number of functionally active LGL.  相似文献   
2.
Listeria monocytogenes is a foodborne pathogen causing systemic infection with high mortality. To allow efficient tracking of outbreaks a clear definition of the genomic signature of a cluster of related isolates is required, but lineage-specific characteristics call for a more detailed understanding of evolution. In our work, we used core genome MLST (cgMLST) to identify new outbreaks combined to core genome SNP analysis to characterize the population structure and gene flow between lineages. Whilst analysing differences between the four lineages of L. monocytogenes we have detected differences in the recombination rate, and interestingly also divergence in the SNP differences between sub-lineages. In addition, the exchange of core genome variation between the lineages exhibited a distinct pattern, with lineage III being the best donor for horizontal gene transfer. Whilst attempting to link bacteriophage-mediated transduction to observed gene transfer, we found an inverse correlation between phage presence in a lineage and the extent of recombination. Irrespective of the profound differences in recombination rates observed between sub-lineages and lineages, we found that the previously proposed cut-off of 10 allelic differences in cgMLST can be still considered valid for the definition of a foodborne outbreak cluster of L. monocytogenes.  相似文献   
3.
Analysis of the NK cell developmental pathway suggests that CD2 expression may be important in regulating NK maturation. To test this hypothesis, we developed mice containing only an inhibitory CD2 molecule by linking the extracellular domain of CD2 to an intracellular immunoreceptor tyrosine-based inhibitory motif (ITIM) motif. Mice containing the CD2 Tg(ITIM) transgene, introduced into a CD2 KO background, have no morphologically detectable lymph nodes, although development of the thymus appears normal. In addition, these mice had major loss of both NK and NKT subsets in peripheral organs, while T and B cell frequencies were intact. Expression of CD2 was low on T cells and lacking on B cells and functional defects were observed in these populations. NKT cells expressing CD4 were absent, while the CD8+ and double negative NKT cells were retained. Small subsets of NK cells were detected but expression of CD2 on these cells was very low or absent, and their maturation was impaired. Based on the phenotype described here, we believe that these mice represent a unique model to study lymphoid organ and lymphocyte development.  相似文献   
4.
The restricted expression of granzyme M in human lymphocytes   总被引:9,自引:0,他引:9  
We have analyzed the expression of human granzyme M (Gzm M) in various human leukocyte subsets using the specific mAb 4H10. Using FACS and Western blotting analysis we compared the expression of Gzm M with that of other granzymes (Gzm A and Gzm B) and the lytic protein perforin. Human Gzm M was constitutively highly expressed in NK cells as was perforin and Gzm A. Surprisingly, freshly isolated NK cells had very low (sometimes undetectable) levels of Gzm B. In contrast to Gzm B and perforin, Gzm M was not detected in highly purified CD4(+) and CD8(+) T cells either constitutively or after short term activation in vitro. However, low levels of Gzm M were observed in some T cell clones on prolonged passage in vitro. Gzm M was not detected in highly purified neutrophils, monocytes, or tumor cells of the myelomonocytic lineage. Examination of minor T cell subsets from human peripheral blood showed detectable Gzm M in CD3(+), CD56(+) T cells and gammadelta T cells. A histological staining procedure was developed that demonstrated a granular staining pattern for Gzm M and a cellular distribution similar to that observed by Western blotting. These data indicate that the expression of Gzm M does not always correlate with the lytic activity of cytotoxic cells. However, expression of Gzm M in NK cells, CD3(+), CD56(+) T cells, and gammadelta T cells suggests that this enzyme may play some role in innate immune responses.  相似文献   
5.

Background  

E. sakazakii is considered to be an opportunistic pathogen, implicated in food borne diseases causing meningitis or enteritis especially in neonates and infants. Cultural standard identification procedures for E. sakazakii include the observation of yellow pigmentation of colonies and a positive glucosidase activity. Up to now, only one PCR system based on a single available 16S rRNA gene sequence has been published for E. sakazakii identification. However, in our hands a preliminary evaluation of this system to a number of target and non-target strains showed significant specificity problems of this system. In this study full-length 16S rRNA genes of thirteen E. sakazakii strains from food, environment and human origin as well as the type strain ATCC 51329 were sequenced. Based on this sequence data a new specific PCR system for E. sakazakii was developed and evaluated.  相似文献   
6.
In the present study, we have tested the ability of hydrodynamically delivered IL-2 cDNA to modulate the number and function of murine leukocyte subsets in different organs and in mice of different genetic backgrounds, and we have evaluated effects of this mode of gene delivery on established murine tumor metastases. Hydrodynamic administration of the IL-2 gene resulted in the rapid and transient production of up to 160 ng/ml IL-2 in the serum. The appearance of IL-2 was followed by transient production of IFN-gamma and a dramatic and sustained increase in NK cell numbers and NK-mediated cytolytic activity in liver and spleen leukocytes. In addition, significant increases in other lymphocyte subpopulations (e.g., NKT, T, and B cells) that are known to be responsive to IL-2 were observed following IL-2 cDNA plasmid delivery. Finally, hydrodynamic delivery of only 4 mug of the IL-2 plasmid to mice bearing established lung and liver metastases was as effective in inhibiting progression of metastases as was the administration of large amounts (100,000 IU/twice daily) of IL-2 protein. Studies performed in mice bearing metastatic renal cell tumors demonstrated that the IL-2 cDNA plasmid was an effective treatment against liver metastasis and moderately effective against lung metastasis. Collectively, these results demonstrate that hydrodynamic delivery of relatively small amounts of IL-2 cDNA provides a simple and inexpensive method to increase the numbers of NK and NKT cells, to induce the biological effects of IL-2 in vivo for use in combination with other biological agents, and for studies of its antitumor activity.  相似文献   
7.
NKT and NK cells are important immune regulatory cells. The only efficient means to selectively stimulate NKT cells in vivo is alpha-galactosylceramide (alphaGalCer). However, alphaGalCer effectively stimulates and then diminishes the number of detectable NKT cells. It also exhibits a potent, indirect ability to activate NK cells. We have now discovered another ceramide compound, beta-galactosylceramide (betaGalCer) (C12), that efficiently diminishes the number of detectable mouse NKT cells in vivo without inducing significant cytokine expression or activation of NK cells. Binding studies using CD1d tetramers loaded with betaGalCer (C12) demonstrated significant but lower intensity binding to NKT cells when compared with alphaGalCer, but both ceramides were equally efficient in reducing the number of NKT cells. However, betaGalCer (C12), in contrast to alphaGalCer, failed to increase NK cell size, number, and cytolytic activity. Also in contrast to alphaGalCer, betaGalCer (C12) is a poor inducer of IFN-gamma, TNF-alpha, GM-CSF, and IL-4 gene expression. These qualitative differences in NKT perturbation/NK activation have important implications for delineating the unique in vivo roles of NKT vs NK cells. Thus, alphaGalCer (which triggers NKT cells and activates NK cells) efficiently increases the resistance to allogeneic bone marrow transplantation while betaGalCer (C12) (which triggers NKT cells but does not activate NK cells) fails to enhance bone marrow graft rejection. Our results show betaGalCer (C12) can effectively discriminate between NKT- and NK-mediated responses in vivo. These results indicate the use of different TCR-binding ceramides can provide a unique approach for understanding the intricate immunoregulatory contributions of these two cell types.  相似文献   
8.
Biological monitoring tools are largely lacking for many countries, resulting in adoption of tools developed from other countries/regions, but in many instances, their applicability to the new system has not been explicitly evaluated. The objective of the study was to test the applicability of the South African Scoring Systems Version 5 (SASS5) to urban streams in Zimbabwe. The study evaluated the relationship between water quality variables and SASS5 indices/metrics [(SASS and average score per taxon (ASPT)] and found high degree of concordance between water chemistry parameters and SASS5 metrics, indicating that both SASS and ASPT scores are sensitive to detect environmental changes. This result can be attributed to occurrence of ubiquitous macroinvertebrate taxa sharing similar environmental tolerances with those recorded for South African systems. The applicability of SASS5 metrics need to be tested across different geographical and climatic regions in the country (taking into consideration seasonal variations that are important drivers of benthic faunal assemblages in lotic systems) and disparities among the regions compared for the adoption of the index in the entire country. The SASS5 metrics can also be further strengthened by (a) taking into account the relative abundance of taxa and (b) also improving on its ability to reflect other forms of perturbations besides eutrophication and organic pollution such heavy metal pollution.  相似文献   
9.
In mammals, the two enzymes in the trans-sulfuration pathway, cystathionine β-synthase (CBS) and cystathionine γ-lyase (CSE), are believed to be chiefly responsible for hydrogen sulfide (H2S) biogenesis. In this study, we report a detailed kinetic analysis of the human and yeast CBS-catalyzed reactions that result in H2S generation. CBS from both organisms shows a marked preference for H2S generation by β-replacement of cysteine by homocysteine. The alternative H2S-generating reactions, i.e. β-elimination of cysteine to generate serine or condensation of 2 mol of cysteine to generate lanthionine, are quantitatively less significant. The kinetic data were employed to simulate the turnover numbers of the various CBS-catalyzed reactions at physiologically relevant substrate concentrations. At equimolar concentrations of CBS and CSE, the simulations predict that H2S production by CBS would account for ∼25–70% of the total H2S generated via the trans-sulfuration pathway depending on the extent of allosteric activation of CBS by S-adenosylmethionine. The relative contribution of CBS to H2S genesis is expected to decrease under hyperhomocysteinemic conditions. CBS is predicted to be virtually the sole source of lanthionine, and CSE, but not CBS, efficiently cleaves lanthionine. The insensitivity of the CBS-catalyzed H2S-generating reactions to the grade of hyperhomocysteinemia is in stark contrast to the responsiveness of CSE and suggests a previously unrecognized role for CSE in intracellular homocysteine management. Finally, our studies reveal that the profligacy of the trans-sulfuration pathway results not only in a multiplicity of H2S-yielding reactions but also yields novel thioether metabolites, thus increasing the complexity of the sulfur metabolome.Hydrogen sulfide (H2S)2 elicits an array of physiological effects, including modulation of blood pressure and reduction of ischemia reperfusion injury (1, 2). Other novel effects of H2S include induction of a state of suspended animation in mouse by decreasing oxygen consumption and drastically reducing the metabolic rate (3) and synchronizing ultradian metabolic oscillation in yeast (4). Under conditions of metabolic cycling in yeast, H2S production is catalyzed by sulfite reductase in the sulfur assimilation pathway (4). Inhibition of sulfite reductase reduces H2S production and in turn perturbs metabolic oscillations. H2S is a specific and potent inhibitor of cytochrome c oxidase in the electron transport chain (3).Although concentrations of H2S have been reported to range from 50 to 160 μm in brain (57) and 30–50 μm in the peripheral system (8), these appear to be grossly overestimated (9). Significantly lower H2S concentrations of 17 and 14 nm in liver and brain, respectively, have been reported recently (9). The very significant discrepancy between these and the previous estimates of H2S levels presumably derives from the earlier use of acidic conditions that led to the release of acid-labile sulfur from iron-sulfur centers.In mammals, the primary catalysts for H2S generation are reported to be the two pyridoxal phosphate (PLP)-dependent enzymes involved in the trans-sulfuration pathway, cystathionine β-synthase (CBS) and cystathionine γ-lyase (CSE) (10, 11). The trans-sulfuration pathway operates in the reverse direction in mammals serving to convert homocysteine to cysteine (Fig. 1), although in yeast and bacteria the pathway is involved in sulfur assimilation from sulfate to cysteine. CBS is widely assumed to be the major contributor to H2S production in the brain because of its relatively high expression in this organ (10). However, a recent study reported that 3-mercaptopyruvate sulfurtransferase together with cysteine aminotransferase might also generate H2S in brain (12). The relative contributions of these enzymes and of CSE, which is also present in brain (13, 14), to H2S production remain to be assessed. Genetic disruption of CSE in mouse leads to cardiac deficits, including pronounced hypertension and reduced endothelium-dependent vasorelaxation, consistent with a major role for CSE in the peripheral system (1). However, brain H2S levels are reportedly unchanged in CSE−/− mice.Open in a separate windowFIGURE 1.Diversity of reactions catalyzed by the trans-sulfuration pathway. The turnover numbers (v/[E]) estimated at physiological substrate concentrations, i.e. 10 μm homocysteine, 100 μm cysteine, 560 μm serine, and 5 μm cystathionine, are shown in parentheses for each reaction. The thick arrows highlight reactions that are sensitive to elevated levels of homocysteine. The fold change represents the fold increase in the turnover number of a given reaction under conditions of severe hyperhomocysteinemia (200 μm homocysteine).Despite the growing recognition of the varied physiological effects of H2S, our understanding of its regulation and mechanism of its biosynthesis is poor. We have recently reported on the complex kinetics of H2S generation by human CSE (15). The profligacy of the human enzyme affords H2S generation by a multiplicity of routes involving cysteine and/or homocysteine as substrates. Kinetic simulations predict an increasingly important contribution of homocysteine to H2S generation with increasing grade of hyperhomocysteinemia, a risk factor for cardiovascular and neurodegenerative diseases (1618). In addition to H2S, a variety of products is generated in these reactions, including two novel sulfur metabolites, lanthionine and homolanthionine, which represent the condensation products between 2 mol of cysteine and homocysteine, respectively. Although the steady-state kinetic parameters for H2S generation from cysteine and homocysteine have been reported for human CBS (hCBS) (19), a comparable detailed kinetic analysis of H2S generation by CBS by multiple pathways and their sensitivity to the grade of hyperhomocysteinemia is not known. Furthermore, the relative contributions of CBS and CSE to H2S and lanthionine generation at physiologically relevant concentrations of substrate are not known.Human CBS is a unique heme containing PLP-dependent enzyme (20) that catalyzes the β-replacement of serine by homocysteine to produce cystathionine. The latter is further metabolized by CSE in an α,γ-elimination reaction to produce cysteine. Although yeast and human CBS are highly homologous and catalyze the same chemical reaction with similar kinetic parameters, the yeast enzyme lacks heme and is not allosterically regulated by S-adenosylmethionine (AdoMet) (21).In this study, we have elucidated the kinetics of H2S biogenesis by yeast and human CBS and used simulations to estimate the relative contributions of CBS and CSE to H2S production at physiologically relevant concentrations of substrate. We find that CBS and CSE share a common feature, i.e. catalytic promiscuity. However, in contrast to CSE, which is proficient at catalyzing reactions at the β- and γ-carbons of substrates (15), CBS activity is confined to chemical transformations at the β-position. Our studies provide new insights into the existence of alternative trans-sulfuration reactions that can be a source of diverse sulfur metabolites, viz. H2S, lanthionine, and homolanthionine increasing the diversity of the sulfur metabolome.  相似文献   
10.

Objective

To design interventions that target energy balance-related behaviours, knowledge of primary schoolchildren''s perceptions regarding soft drink intake, fruit juice intake, breakfast consumption, TV viewing and physical activity (PA) is essential. The current study describes personal beliefs and attitudes, home- and friend-related variables regarding these behaviours across Europe.

Design

Cross-sectional study in which personal, family and friend -related variables were assessed by validated questionnaires, and dichotomized as favourable versus unfavourable answers. Logistic regression analyses were conducted to estimate proportions of children giving unfavourable answers and test between-country differences.

Setting

A survey in eight European countries.

Subjects

A total of 7903 10–12 year old primary schoolchildren.

Results

A majority of the children reported unfavourable attitudes, preferences and subjective norms regarding soft drink, fruit juice intake and TV viewing accompanied with high availability and accessibility at home. Few children reported unfavourable attitudes and preferences regarding breakfast consumption and PA. Many children reported unfavourable health beliefs regarding breakfast consumption and TV viewing. Substantial differences between countries were observed, especially for variables regarding soft drink intake, breakfast consumption and TV viewing.

Conclusion

The surveyed children demonstrated favourable attitudes to some healthy behaviours (PA, breakfast intake) as well as to some unhealthy behaviours (soft drink consumption, TV viewing). Additionally, many children across Europe have personal beliefs and are exposed to social environments that are not supportive to engagement in healthy behaviours. Moreover, the large differences in personal, family and friend-related variables across Europe argue for implementing different strategies in the different European countries.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号