首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   240篇
  免费   15篇
  2023年   1篇
  2022年   1篇
  2021年   4篇
  2020年   1篇
  2018年   2篇
  2017年   4篇
  2016年   2篇
  2015年   6篇
  2014年   13篇
  2013年   13篇
  2012年   9篇
  2011年   19篇
  2010年   12篇
  2009年   9篇
  2008年   12篇
  2007年   12篇
  2006年   10篇
  2005年   11篇
  2004年   22篇
  2003年   7篇
  2002年   13篇
  2001年   5篇
  2000年   4篇
  1999年   2篇
  1998年   1篇
  1996年   2篇
  1995年   2篇
  1992年   7篇
  1991年   6篇
  1990年   4篇
  1989年   2篇
  1988年   7篇
  1987年   7篇
  1986年   4篇
  1985年   1篇
  1984年   1篇
  1983年   3篇
  1982年   1篇
  1981年   1篇
  1979年   3篇
  1978年   2篇
  1977年   2篇
  1976年   3篇
  1971年   1篇
  1966年   1篇
排序方式: 共有255条查询结果,搜索用时 31 毫秒
1.
A cytophysiological study was carried out of the functional status of a halo as a response of the host plant to contact with a powdery mildew pathogen. Interactions of the powdery mildew causative agents with barley, wheat, wheat–wheat-grass hybrids, wheat-aegilops lines, and aegilops with different genotypic resistance lead to the expression of haloes during pathogens, which are induced by infection pegs of the primary growth tubes, appressoria, and hyphal lobes. Haloes are visualized using cytochemical reactions to proteins and scanning electron microscopy. The observed differences in the size of haloes and intensity of their staining (uniform or zonal) are related, to a great extent, to individual reactions of the plant cell at the penetration site and, to a lesser extent, to the level of genotypic resistance. An analysis of electron microscopy and cytochemistry studies suggests that the halo as a physiologically active zone is localized at the level of the plant cell plasmalemma. Active taxis of the cell organelles to the site of infection during the formation of a halo suggests that some kind of informational signals to changes in the cell metabolism are spread from the halo zone, which lead to compatible or incompatible interactions.  相似文献   
2.
On addition of DMSO, the MEL cell line TSA8 becomes committed into erythroid progenitor cells (CFU-E) which can form differentiated colonies in the presence of erythropoietin. To understand the mechanism of cellular commitment, the number and the affinity of the receptors for erythropoietin were estimated. The affinity of the receptors did not change before or after induction. The number of receptors changed depending on the growth phase, but was not dependent on the addition of the inducer. Thus, the presence of the receptors for erythropoietin may be required, but are not essential for responsiveness to erythropoietin. Further examination of the optimum conditions for commitment suggests that the concomitant actions of induced factor(s) with the receptors may control commitment of TSA8 cells to CFU-E.  相似文献   
3.
K Imoto  T Konno  J Nakai  F Wang  M Mishina  S Numa 《FEBS letters》1991,289(2):193-200
The channel pore of the nicotinic acetylcholine receptor (AChR) has been investigated by analysing single-channel conductances of systematically mutated Torpedo receptors expressed in Xenopus oocytes. The mutations mainly alter the size and polarity of uncharged polar amino acid residues of the acetylcholine receptor subunits positioned between the cytoplasmic ring and the extracellular ring. From the results obtained, we conclude that a ring of uncharged polar residues comprising threonine 244 of the alpha-subunit (alpha T244), beta S250, gamma T253 and delta S258 (referred to as the central ring) and the anionic intermediate ring, which are adjacent to each other in the assumed alpha-helical configuration of the M2-containing transmembrane segment, together form a narrow channel constriction of short length, located close to the cytoplasmic side of the membrane. Our results also suggest that individual subunits, particularly the gamma-subunit, are asymmetrically positioned at the channel constriction.  相似文献   
4.
Summary The effects of cerulenin, an anti-lipogenic antibiotic, on the growth and cellular fatty acid composition ofCandida lipolytica were investigated by changing the chain length of n-alkane, the growth substrate. The antibiotic inhibited almost completely the growth of the yeast on glucose, n-undecane and n-dodecane, but partly that on n-tridecane. The yeast growth on longer alkanes, e.g., from n-tetradecane to n-octadecane, was not affected by this antibiotic, indicating that a chain elongation system and/or intact incorporation system predominantly operate in the formation of cellular fatty acids from such longer chain n-alkanes. Comparison of the fatty acid profiles between the cells grown on n-alkanes of different chain lengths, especially on n-pentadecane, in the presence and absence of cerulenin, supported the supposition that only the de novo synthesis system of the yeast would be affected by the antibiotic, whereas the chain elongation system would not.  相似文献   
5.
Recent genome-wide association studies showed that serum uric acid (SUA) levels relate to ABCG2/BCRP gene, which locates in a gout-susceptibility locus revealed by a genome-wide linkage study. Together with the ABCG2 characteristics, we hypothesized that ABCG2 transports urate and its dysfunction causes hyperuricemia and gout. Transport assays showed ATP-dependent transport of urate via ABCG2. Kinetic analysis revealed that ABCG2 mediates high-capacity transport of urate (Km: 8.24 ± 1.44 mM) even under high-urate conditions. Mutation analysis of ABCG2 in 90 Japanese hyperuricemia patients detected six nonsynonymous mutations, including five dysfunctional variants. Two relatively frequent dysfunctional variants, Q126X and Q141K, were then examined. Quantitative trait locus analysis of 739 Japanese individuals showed that Q141K increased SUA as the number of minor alleles of Q141K increased (p = 6.60 × 10?5). Haplotype frequency analysis revealed that there is no simultaneous presence of Q126X and Q141K in one haplotype. Becuase Q126X and Q141K are assigned to nonfunctional and half-functional haplotypes, respectively, their genotype combinations are divided into four functional groups. The association study with 161 male gout patients and 865 male controls showed that all of those with dysfunctional ABCG2 increased the gout risk, especially those with ≤1/4 function (OR, 25.8; 95% CI, 10.3–64.6; p = 3.39 × 10?21). These genotypes were found in 10.1% of gout patients, but in only 0.9% of control. Our function-based clinicogenetic (FBCG) analysis showed that combinations of the two dysfunctional variants are major causes of gout, thereby providing a new approach for prevention and treatment of the gout high-risk population.  相似文献   
6.
Interleukin-1 receptor accessory protein-like 1 (IL1RAPL1) is associated with X-linked mental retardation and autism spectrum disorder. We found that IL1RAPL1 regulates synapse formation of cortical neurons. To investigate how IL1RAPL1 controls synapse formation, we here screened IL1RAPL1-interacting proteins by affinity chromatography and mass spectroscopy. IL1RAPL1 interacted with Mcf2-like (Mcf2l), a Rho guanine nucleotide exchange factor, through the cytoplasmic Toll/IL-1 receptor domain. Knockdown of endogenous Mcf2l and treatment with an inhibitor of Rho-associated protein kinase (ROCK), the downstream kinase of RhoA, suppressed IL1RAPL1-induced excitatory synapse formation of cortical neurons. Furthermore, we found that the expression of IL1RAPL1 affected the turnover of AMPA receptor subunits. Insertion of GluA1-containing AMPA receptors to the cell surface was decreased, whereas that of AMPA receptors composed of GluA2/3 was enhanced. Mcf2l knockdown and ROCK inhibitor treatment diminished the IL1RAPL1-induced changes of AMPA receptor subunit insertions. Our results suggest that Mcf2l-RhoA-ROCK signaling pathway mediates IL1RAPL1-dependent formation and stabilization of glutamatergic synapses of cortical neurons.  相似文献   
7.
The content of total cellular lipid of Candida tropicalis grown on a mixture of n-alkanes (C10–C18) was about 20% of the dry cell weight at the exponential growth phase and 14% at the early stationary phase. Phospholipid corresponded to approximately 70 % of the total lipid independent of the growth phases. The composition of cellular lipid classes did not change significantly during the growth. On the other hand, a drastic time-course change in fatty acid composition was observed. The proportion of odd-chain fatty acids, one of the most specific cellular components of the yeast grown on the n-alkane mixture, increased in both phospholipid and triglyceride along with the yeast growth. In the meantime, the proportion of polyunsaturated fatty acids varied markedly during the course of cultivation, showing a peak at the early growth phase. The high content of polyunsaturated fatty acids at the early stages of growth correlated to the contents of these acids in phospholipid rather than in triglyceride.  相似文献   
8.
Accumulated evidence has suggested that BMP pathways play critical roles during mammalian cardiogenesis and impairment of BMP signaling may contribute to human congenital heart diseases (CHDs), which are the leading cause of infant morbidity and mortality. Alk3 encodes a BMP specific type I receptor expressed in mouse embryonic hearts. To reveal functions of Alk3 during atrioventricular (AV) cushion morphogenesis and to overcome the early lethality of Alk3(-/-) embryos, we applied a Cre/loxp approach to specifically inactivate Alk3 in the endothelium/endocardium. Our studies showed that endocardial depletion of Alk3 severely impairs epithelium-mesenchymal-transformation (EMT) in the atrioventricular canal (AVC) region; the number of mesenchymal cells formed in Tie1-Cre;Alk3(loxp/loxp) embryos was reduced to only approximately 20% of the normal level from both in vivo section studies and in vitro explant assays. We showed, for the first time, that in addition to its functions on mesenchyme formation, Alk3 is also required for the normal growth/survival of AV cushion mesenchymal cells. Functions of Alk3 are accomplished through regulating expression/activation/subcellular localization of multiple downstream genes including Smads and cell-cycle regulators. Taken together, our study supports the notion that Alk3-mediated BMP signaling in AV endocardial/mesenchymal cells plays a central role during cushion morphogenesis.  相似文献   
9.
The Escherichia coli AlkB protein was recently found to repair cytotoxic DNA lesions 1-methyladenine and 3-methylcytosine by using a novel iron-catalyzed oxidative demethylation mechanism. Three human homologs, ABH1, ABH2 and ABH3, have been identified, and two of them, ABH2 and ABH3, were shown to have similar repair activities to E.coli AlkB. However, ABH1 did not show any repair activity. It was suggested that ABH3 prefers single-stranded DNA and RNA substrates, whereas AlkB and ABH2 can repair damage in both single- and double-stranded DNA. We employed a chemical cross-linking approach to probe the structure and substrate preferences of AlkB and its three human homologs. The putative active site iron ligands in these proteins were mutated to cysteine residues. These mutant proteins were used to cross-link to different DNA probes bearing thiol-tethered bases. Disulfide-linked protein–DNA complexes can be trapped and analyzed by SDS–PAGE. Our results show that ABH2 and ABH3 have structural and functional similarities to E.coli AlkB. ABH3 shows preference for the single-stranded DNA probe. ABH1 failed to cross-link to the probes tested. This protein, unlike other AlkB proteins, does not seem to interact with DNA in its E.coli expressed form.  相似文献   
10.
Articular cartilage plays an essential role in health and mobility, but is frequently damaged or lost in millions of people that develop arthritis. The molecular mechanisms that create and maintain this thin layer of cartilage that covers the surface of bones in joint regions are poorly understood, in part because tools to manipulate gene expression specifically in this tissue have not been available. Here we use regulatory information from the mouse Gdf5 gene (a bone morphogenetic protein [BMP] family member) to develop new mouse lines that can be used to either activate or inactivate genes specifically in developing joints. Expression of Cre recombinase from Gdf5 bacterial artificial chromosome clones leads to specific activation or inactivation of floxed target genes in developing joints, including early joint interzones, adult articular cartilage, and the joint capsule. We have used this system to test the role of BMP receptor signaling in joint development. Mice with null mutations in Bmpr1a are known to die early in embryogenesis with multiple defects. However, combining a floxed Bmpr1a allele with the Gdf5-Cre driver bypasses this embryonic lethality, and leads to birth and postnatal development of mice missing the Bmpr1a gene in articular regions. Most joints in the body form normally in the absence of Bmpr1a receptor function. However, articular cartilage within the joints gradually wears away in receptor-deficient mice after birth in a process resembling human osteoarthritis. Gdf5-Cre mice provide a general system that can be used to test the role of genes in articular regions. BMP receptor signaling is required not only for early development and creation of multiple tissues, but also for ongoing maintenance of articular cartilage after birth. Genetic variation in the strength of BMP receptor signaling may be an important risk factor in human osteoarthritis, and treatments that mimic or augment BMP receptor signaling should be investigated as a possible therapeutic strategy for maintaining the health of joint linings.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号