首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   298篇
  免费   19篇
  国内免费   1篇
  2024年   2篇
  2023年   3篇
  2022年   6篇
  2021年   18篇
  2020年   28篇
  2019年   42篇
  2018年   27篇
  2017年   14篇
  2016年   23篇
  2015年   14篇
  2014年   19篇
  2013年   31篇
  2012年   22篇
  2011年   16篇
  2010年   11篇
  2009年   14篇
  2008年   7篇
  2007年   9篇
  2006年   3篇
  2005年   3篇
  2004年   3篇
  1999年   1篇
  1998年   1篇
  1977年   1篇
排序方式: 共有318条查询结果,搜索用时 15 毫秒
1.
2.
Molecular Biology Reports - This work aims to evaluate the renoprotective effect of luteolin on expression of Nrf2 and miR320 in ischemia–reperfusion (I/R) injury in rats. Thirty rats were...  相似文献   
3.
4.

Introduction  

The efficacy and the optimal type and volume of aerobic exercise (AE) in fibromyalgia syndrome (FMS) are not established. We therefore assessed the efficacy of different types and volumes of AE in FMS.  相似文献   
5.

Colloidal nanoparticles (NPs) interact with biological fluids such as human plasma to form a protein coating (corona) on the surface of NPs (NP-protein complex). However, the impact of size and type of NPs on binding of the hard corona to the surface of NPs as well as damping of their optical spectra has not been systematically explored. To elucidate the interaction between biological environment (human plasma) and NPs, a photophysical measurement was conducted to quantify the interaction of two different types of NPs (gold (Au) and silver (Ag)) with common human plasma proteins. The colloidal AuNPs and AgNPs were electrostatically stabilized and varied in diameter from 10 to 80 nm in the presence of common human plasma. The sizes of the NPs were determined using transmission electron microscopy (TEM). Optical absorption spectra were obtained for the complexes. Dynamic light scattering (DLS) measurement and zeta potential were used to characterize the sizes, hydrodynamic diameters, and surface charges of the protein-NPs complexes. Protein separation was performed using sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) to isolate and identify the protein bands. The absorption of proteins to the NPs was found to be strongly dependent on the size and type of NPs. The distance between surface of NPs by absorbed protein bound to the NPs gradually increased with size of NPs, particularly for AgNPs with primary diameter of < 50 nm. The chi-square test proved that AgNPs are a good candidate in sensing the protein complex in human plasma compared with AuNPs mainly for the AgNPs with diameter sized 50 nm.

  相似文献   
6.
Molecular Biology Reports - Among different pathological mechanisms, neuronal loss and neurogenesis impairment in the hippocampus play important roles in cognitive decline in Alzheimer’s...  相似文献   
7.
8.
Exclusion of sodium ions from cells is one of the key salinity tolerance mechanisms in plants. The high-affinity cation transporter (HKT1;5) is located in the plasma membrane of the xylem, excluding Na+ from the parenchyma cells to reduce Na+ concentration. The regulatory mechanism and exact functions of HKT genes from different genotypic backgrounds are relatively obscure. In this study, the expression patterns of HKT1;5 in A and D genomes of wheat were investigated in root and leaf tissues of wild and domesticated genotypes using real-time PCR. In parallel, the K+/Na+ ratio was measured in salt-tolerant and salt-sensitive cultivars. Promoter analysis were applied to shed light on underlying regulatory mechanism of the HKT1;5 expression. Gene isolation and qPCR confirmed the expression of HKT1;5 in the A and D genomes of wheat ancestors (Triticum boeoticum, AbAb and Aegilops crassa, MMDD, respectively). Interestingly, earlier expression of HKT1;5 was detected in leaves compared with roots in response to salt stress. In addition, the salt-tolerant genotypes expressed HKT1;5 before salt-sensitive genotypes. Our results suggest that HKT1;5 expression follows a tissue- and genotype-specific pattern. The highest level of HKT1;5 expression was observed in the leaves of Aegilops, 6 h after being subjected to high salt stress (200 mM). Overall, the D genome allele (HKT1;5-D) showed higher expression than the A genome (HKT1;5-A) allele when subjected to a high NaCl level. We suggest that the D genome is more effective regarding Na+ exclusion. Furthermore, in silico promoter analysis showed that TaHKT1;5 genes harbor jasmonic acid response elements.  相似文献   
9.

Background

The exact mechanisms of morphine-induced dependence and withdrawal symptoms remain unclear. In order to identify an agent that can prevent withdrawal syndrome, many studies have been performed. This study was aimed to evaluate the effect of gap junction blockers; carbenoxolone (CBX) or mefloquine (MFQ); on morphine withdrawal symptoms in male rat.Adult male Wistar rats (225 – 275 g) were selected randomly and divided into 10 groups. All groups underwent stereotaxic surgery and in order to induce dependency, morphine was administered subcutaneously) Sc) at an interval of 12 hours for nine continuous days. On the ninth day of the experiment, animals received vehicle or CBX (100, 400, 600 μg/10 μl/rat, icv) or MFQ (50, 100 and 200 μg/10 μl/rat, icv) after the last saline or morphine (Sc) injection. Morphine withdrawal symptoms were precipitated by naloxone hydrochloride 10 min after the treatments. The withdrawal signs including: jumping, rearing, genital grooming, abdomen writhing, wet dog shake and stool weight, were recorded for 60 minutes.

Results

Results showed that CBX and MFQ decreased all withdrawal signs; and the analysis indicated that they could attenuate the total withdrawal scores significantly.

Conclusion

Taking together it is concluded that gap junction blockers prevented naloxone-precipitated withdrawal symptoms.  相似文献   
10.
A small number of stress-responsive genes, such as those of the mitochondrial F1F0-ATP synthase complex, are encoded by both the nucleus and mitochondria. The regulatory mechanism of these joint products is mysterious. The expression of 6-kDa subunit (MtATP6), a relatively uncharacterized nucleus-encoded subunit of F0 part, was measured during salinity stress in salt-tolerant and salt-sensitive cultivated wheat genotypes, as well as in the wild wheat genotypes, Triticum and Aegilops using qRT-PCR. The MtATP6 expression was suddenly induced 3 h after NaCl treatment in all genotypes, indicating an early inducible stress-responsive behavior. Promoter analysis showed that the MtATP6 promoter includes cis-acting elements such as ABRE, MYC, MYB, GTLs, and W-boxes, suggesting a role for this gene in abscisic acid-mediated signaling, energy metabolism, and stress response. It seems that 6-kDa subunit, as an early response gene and nuclear regulatory factor, translocates to mitochondria and completes the F1F0-ATP synthase complex to enhance ATP production and maintain ion homeostasis under stress conditions. These communications between nucleus and mitochondria are required for inducing mitochondrial responses to stress pathways. Dual targeting of 6-kDa subunit may comprise as a mean of inter-organelle communication and save energy for the cell. Interestingly, MtATP6 showed higher and longer expression in the salt-tolerant wheat and the wild genotypes compared to the salt-sensitive genotype. Apparently, salt-sensitive genotypes have lower ATP production efficiency and weaker energy management than wild genotypes; a stress tolerance mechanism that has not been transferred to cultivated genotypes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号