首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   142篇
  免费   4篇
  146篇
  2024年   1篇
  2022年   4篇
  2021年   9篇
  2020年   13篇
  2019年   19篇
  2018年   11篇
  2017年   6篇
  2016年   14篇
  2015年   7篇
  2014年   6篇
  2013年   12篇
  2012年   11篇
  2011年   7篇
  2010年   4篇
  2009年   7篇
  2008年   4篇
  2007年   5篇
  2006年   1篇
  2005年   1篇
  2004年   3篇
  1998年   1篇
排序方式: 共有146条查询结果,搜索用时 15 毫秒
1.
2.
3.
A small number of stress-responsive genes, such as those of the mitochondrial F1F0-ATP synthase complex, are encoded by both the nucleus and mitochondria. The regulatory mechanism of these joint products is mysterious. The expression of 6-kDa subunit (MtATP6), a relatively uncharacterized nucleus-encoded subunit of F0 part, was measured during salinity stress in salt-tolerant and salt-sensitive cultivated wheat genotypes, as well as in the wild wheat genotypes, Triticum and Aegilops using qRT-PCR. The MtATP6 expression was suddenly induced 3 h after NaCl treatment in all genotypes, indicating an early inducible stress-responsive behavior. Promoter analysis showed that the MtATP6 promoter includes cis-acting elements such as ABRE, MYC, MYB, GTLs, and W-boxes, suggesting a role for this gene in abscisic acid-mediated signaling, energy metabolism, and stress response. It seems that 6-kDa subunit, as an early response gene and nuclear regulatory factor, translocates to mitochondria and completes the F1F0-ATP synthase complex to enhance ATP production and maintain ion homeostasis under stress conditions. These communications between nucleus and mitochondria are required for inducing mitochondrial responses to stress pathways. Dual targeting of 6-kDa subunit may comprise as a mean of inter-organelle communication and save energy for the cell. Interestingly, MtATP6 showed higher and longer expression in the salt-tolerant wheat and the wild genotypes compared to the salt-sensitive genotype. Apparently, salt-sensitive genotypes have lower ATP production efficiency and weaker energy management than wild genotypes; a stress tolerance mechanism that has not been transferred to cultivated genotypes.  相似文献   
4.
Visceral leishmaniasis (VL) is a vector-borne disease affecting humans and domestic animals that constitutes a serious public health problem in many countries. Although many antigens have been examined so far as protein- or DNA-based vaccines, none of them conferred complete long-term protection. The use of the lizard non-pathogenic to humans Leishmania (L.) tarentolae species as a live vaccine vector to deliver specific Leishmania antigens is a recent approach that needs to be explored further. In this study, we evaluated the effectiveness of live vaccination in protecting BALB/c mice against L. infantum infection using prime-boost regimens, namely Live/Live and DNA/Live. As a live vaccine, we used recombinant L. tarentolae expressing the L. donovani A2 antigen along with cysteine proteinases (CPA and CPB without its unusual C-terminal extension (CPB-CTE)) as a tri-fusion gene. For DNA priming, the tri-fusion gene was encoded in pcDNA formulated with cationic solid lipid nanoparticles (cSLN) acting as an adjuvant. At different time points post-challenge, parasite burden and histopathological changes as well as humoral and cellular immune responses were assessed. Our results showed that immunization with both prime-boost A2-CPA-CPB-CTE-recombinant L. tarentolae protects BALB/c mice against L. infantum challenge. This protective immunity is associated with a Th1-type immune response due to high levels of IFN-γ production prior and after challenge and with lower levels of IL-10 production after challenge, leading to a significantly higher IFN-γ/IL-10 ratio compared to the control groups. Moreover, this immunization elicited high IgG1 and IgG2a humoral immune responses. Protection in mice was also correlated with a high nitric oxide production and low parasite burden. Altogether, these results indicate the promise of the A2-CPA-CPB-CTE-recombinant L. tarentolae as a safe live vaccine candidate against VL.  相似文献   
5.
Autophagy is considered as an important mechanism for maintaining homeostasis and responsible for the degradation of superfluous or potentially toxic components and organelles. Autophagy impairment is associated with a number of pathological conditions, such as aging, neurological disorders, cancer, and infection. Autophagy also plays a significant role in cancer chemotherapy. The multiple cancer drugs have been notably developed with the strategy of autophagy modulation. Statins, 3-hydroxy-3-methyl-glutaryl-CoA inhibitors, are known due to their efficacy in decreasing low-density lipoprotein and extensively used for the management of cardiovascular diseases. Statins have other therapeutic and biological activities, such as antioxidant, anti-inflammatory, antitumor, and neuroprotective known as pleiotropic effects. It seems that statins are capable of targeting various signaling pathways in the induction of their great pharmacological effects. At the present study, we demonstrate the therapeutic effects of statins mediated via autophagy regulation.  相似文献   
6.
Survivin is a member of the family of apoptosis inhibitory proteins with increased expression level in most cancerous tissues. Evidence shows that survivin plays regulatory roles in proliferation or survival of normal adult cells, principally vascular endothelial cells, T lymphocytes, primitive hematopoietic cells, and polymorphonuclear neutrophils. Survivin antiapoptotic role is, directly and indirectly, related to caspase proteins and shows its role in cell division through the chromosomal passenger complex. Survivin contains many genetic polymorphisms that the role of some variations has been proven in several cancers. The −31G/C polymorphism is one of the most important survivin mutations which is located in the promoter region on a CDE/CHR motif. This polymorphism can upregulate the survivin messenger RNA. In addition, its allele C can increase the risk of cancers in 1.27-fold than allele G. Considering the fundamental role of survivin in different cancers, this protein could be considered as a new therapeutic target in cancer treatment. For this purpose, various strategies have been designed including the prevention of survivin expression through inhibition of mRNA translation using antagonistic molecules, inhibition of survivin gene function through small inhibitory molecules, gene therapy, and immunotherapy. In this study, we describe the structure, played roles in physiological and pathological states and genetic polymorphisms of survivin. Finally, the role of survivin as a potential target in cancer therapy given challenges ahead has been discussed.  相似文献   
7.
Leishmaniasis is a worldwide disease that leads to high mortality and morbidity in human populations. Today, leishmaniasis is managed via drug therapy. The drugs that are already in clinical use are limited to a number of toxic chemical compounds and their parasite drug resistance is increasing. It is therefore essential, in order to circumvent the current difficulties, to design a new anti-leishmanial drug treatment strategy. Besides producing new, active anti-leishmanial entities, another promising strategy could be developing novel delivery systems and formulations of the existing pharmaceutical ingredients to improve drug efficacy. In the present study, paromomycin sulfate (PM), as one of the promising anti-leishmanial drugs, was formulated in solid lipid nanoparticles (SLN), and its in vitro efficacy was investigated against different strains of Leishmania using a MTT test, Parasite-Rescue-Transformation-Assay, SYTO Green staining, and fluorescent microscope imaging. The results show that PM-loaded SLN is significantly more effective than PM in inhibiting parasite propagation (P?<?0.05) and that cytotoxicity of PM-SLN formulations is size dependent. According to our results, delivery of the drugs to the macrophages via nanoparticle utilization seems to be an accessible and practical approach.  相似文献   
8.
Probiotics and Antimicrobial Proteins - This study was conducted to evaluate different doses of two species of Bacillus (Bacillus licheniformis and Bacillus subtilis), on growth parameters,...  相似文献   
9.
Gastric cancer is the second cause of cancer-related mortality and the fourth most common cancers worldwide. Owing to the immune modulatory effect of vitamin D in the body, the role of vitamin D receptor gene in vitamin D regulation receives a great deal of research interest. The aim of the current study was to highlight the association between two variants of TaqI and FokI in the vitamin D receptor gene and gastric cancer predisposition in a sample of South Khorasan population. The present investigation consisted of 69 patients affected with gastric cancer and 100 healthy individuals. The genomic DNA was extracted by salting out the protocol from peripheral venous blood. Genotyping of TaqI and FokI variants were performed by PCR-RFLP method. Our findings manifested that TC genotype of TaqI polymorphism was statistically significant between the case and the control groups (p = 0.002). Moreover, the frequency of TC + CC genotypes was statistically significant between the two groups (p = 0.009). Furthermore, we could not find any meaningful association between FokI variant and the participant groups. The present results declared that, in our population, TC genotype of TaqI polymorphism has an association with gastric cancer susceptibility. In addition, more investigation with greater sample sizes is needed to confirm our results.  相似文献   
10.
Introduction: Broccoli (Brassica oleracea) is well known for its properties as an anticancer, antioxidant, and scavenger of free radicals. However, its benefits in enhancing spermatogenesis have not been well established.Objective: To study broccoli aqueous extract effects on sperm factors and the expression of genes Catsper1, Catsper2, Arl4a, Sox5, and Sox9 in sperm factors in mice.Material and methods: Male mice were divided randomly into six groups: (1) Control; (2) cadmium (3 mg/kg of mouse body weight); (3) orally treated with 200 µl broccoli aqueous extract (1 g ml-1); (4) orally treated with 400 µl of broccoli aqueous extract; (5) orally treated with 200 broccoli aqueous extract plus cadmium, and (6) orally treated with 400 µl of broccoli aqueous extract plus cadmium. We analyzed the sperms factors and Catsper1, Catsper2, Arl4a, Sox5, and Sox9 gene expression.Results: An obvious improvement in sperm count and a slight enhancement in sperm motility were observed in mice treated with broccoli extract alone or with cadmium. Sperm viability was reduced by broccoli extract except for the 200 µl dose with cadmium, which significantly increased it. Interestingly, Arl4a gene expression increased in the 400 µl broccoli- treated group. Likewise, the Arl4a mRNA level in mice treated with cadmium and 200 µl of broccoli extract was higher than in the cadmium-treated mice. Furthermore, broccoli extract enhanced the mRNA level of Catsper2 and Sox5 genes in mice treated with 200 µl and 400 µl broccoli extract plus cadmium compared with the group treated solely with cadmium.Conclusion: The higher sperm count in broccoli-treated mice opens the way for the development of pharmaceutical products for infertile men.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号