首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
  国内免费   1篇
  2009年   2篇
  2005年   1篇
  2004年   1篇
排序方式: 共有4条查询结果,搜索用时 15 毫秒
1
1.
Dehydrin gene (Dhn) expression is associated with plant response to dehydration. The aim of the present study was to investigate the association of differential expression of Dhn genes (Dhn 1, 3, 5, 6, and 9) with drought tolerance found in wild barley (Hordeum spontaneum). Tolerant and sensitive genotypes were identified from Israeli (Tabigha microsite) and Jordanian (Jarash and Waddi Hassa) populations (based on scoring of water loss rate of 390 genotypes). The five Dhn genes were up‐regulated by dehydration in resistant and sensitive wild barley genotypes. Notably, differences between resistant and sensitive genotypes were detected, mainly in the expression of Dhn1 and Dhn6 genes, depending on the duration of dehydration stress. Dhn1 tended to react earlier (after 3 h) and higher (12 h and 24 h) in resistant compared to sensitive genotypes. The level of expression of Dhn6 was significantly higher in the resistant genotypes at the earlier stages after stress. However, after 12 and 24 h Dhn6 expression was relatively higher in sensitive genotypes. The present results may indicate that these genes have some functional role in the dehydration tolerance in wild barley. The authors suggest that the observed differences of Dhn expression in wild barley, originating from different micro‐ and macro ecogeographic locations, may be the result of adaptive edaphic and climatic selective pressures.  相似文献   
2.
采用氢化物-原子荧光法,对种植于黔中的来自以色列15个野生二粒小麦群体110个基因型籽粒含硒量进行检测分析.结果表明,15个群体含硒量差异极显著(P≤0.001);110个基因型籽粒硒含量和单粒硒含量分别为0.043~0.409 mg kg-1和0.008~0.125 mg seed-1,平均值分别为0.180 mg kg-1和0.046 mg seed-1.籽粒硒含量和单粒硒含量最低的基因型分别是Gamla群体的TZ120和Mt.Hermon群体的TZ8,最高的基因型分别为Bat-Shelomo群体的TZ36和TZ34.在群体水平上硒浓度差异明显,变异系数CV为9%~74%;斯皮尔曼秩相关分析表明,籽粒硒含量分别与该群体起源地海拔、年平均降雨量、平均干旱天数呈显著负相关,与年均温、8月均温、1月均温呈显著正相关.单粒硒含量的相关分析与籽粒硒含量的相似.野生二粒小麦籽粒含硒量的差异是长期适应环境的结果,其遗传多样性将为小麦硒营养机理研究和育种利用提供材料.  相似文献   
3.
Wild emmer wheat (Triticum turgidum spp. dicoccoides (Körn.) Thell.), the tetraploid progenitor of cultivated wheat, is a potential source for various agronomical traits, including drought resistance. The objectives of this study were to characterize (1) the genetic diversity for drought resistance in wild emmer wheat, and (2) the relationship between drought responses of the wild emmer germplasm and the ecogeographical parameters of its collection sites. A total of 110 wild emmer accessions consisting of 25 populations and three control durum wheat cultivars were examined under two irrigation regimes, well-watered (’wet’) and water-limited (’dry’). Wide genetic diversity was found both between and within the wild emmer populations in most variables under each treatment. A considerable number of the wild emmer accessions exhibited an advantage in productivity (spike and total dry matter) over their cultivated counterparts. Most wild emmer wheat accessions exhibited a greater carbon isotope ratio (δ13C, indicating higher water-use efficiency) under the dry treatment and higher plasticity of δ13C relative to the cultivated controls, which may have contributed to the drought adaptations in the former. The most outstanding drought-tolerance capacity (in term of productivity under the dry treatment and susceptibility indices) was detected in wild emmer populations originated from hot dry locations. The results suggest that wild emmer has the potential to improve drought resistance in cultivated wheat.  相似文献   
4.
Drought is the major factor limiting wheat productivity worldwide. The gene pool of wild emmer wheat, Triticum turgidum ssp. dicoccoides , harbours a rich allelic repertoire for morpho-physiological traits conferring drought resistance. The genetic and physiological bases of drought responses were studied here in a tetraploid wheat population of 152 recombinant inbreed lines (RILs), derived from a cross between durum wheat (cv. Langdon) and wild emmer (acc# G18-16), under contrasting water availabilities. Wide genetic variation was found among RILs for all studied traits. A total of 110 quantitative trait loci (QTLs) were mapped for 11 traits, with LOD score range of 3.0–35.4. Several QTLs showed environmental specificity, accounting for productivity and related traits under water-limited (20 QTLs) or well-watered conditions (15 QTLs), and in terms of drought susceptibility index (22 QTLs). Major genomic regions controlling productivity and related traits were identified on chromosomes 2B, 4A, 5A and 7B. QTLs for productivity were associated with QTLs for drought-adaptive traits, suggesting the involvement of several strategies in wheat adaptation to drought stress. Fifteen pairs of QTLs for the same trait were mapped to seemingly homoeologous positions, reflecting synteny between the A and B genomes. The identified QTLs may facilitate the use of wild alleles for improvement of drought resistance in elite wheat cultivars.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号