首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   84篇
  免费   11篇
  2017年   1篇
  2016年   2篇
  2015年   3篇
  2014年   1篇
  2013年   4篇
  2012年   4篇
  2011年   4篇
  2010年   5篇
  2009年   3篇
  2008年   5篇
  2007年   5篇
  2006年   8篇
  2005年   4篇
  2004年   6篇
  2003年   8篇
  2002年   3篇
  2001年   4篇
  2000年   2篇
  1999年   4篇
  1998年   1篇
  1996年   1篇
  1992年   1篇
  1991年   2篇
  1990年   1篇
  1989年   2篇
  1988年   2篇
  1986年   2篇
  1985年   1篇
  1984年   1篇
  1983年   2篇
  1976年   1篇
  1974年   2篇
排序方式: 共有95条查询结果,搜索用时 31 毫秒
1.
Microsomal preparations from adult male rat liver actively oxidized RU38486 into the 11 beta-monodemethylated, 11 beta-didemethylated and 17 alpha-hydroxylated derivatives, metabolites which are known to be formed in vivo. These oxidative reactions were inhibited at different degrees by P450 chemical inhibitors. Pretreatment of the animals by P450 mono-oxygenase prototype inducers led to drastic changes in RU38486 metabolization. Methylcholanthrene treatment carried out a significant decrease while phenobarbital markedly increased the metabolic activity of the liver microsomes. Moreover, antibodies to methylcholantrene-inducible P450 forms did not affect the metabolic activity while a complete blockade-of RU38486 oxidation was observed in the presence of antibodies to phenobarbital- inducible forms. The present results demonstrate that liver P450 mono-oxygenases are engaged in different oxidative steps of RU38486 metabolism and that phenobarbital-inducible but not methylcholanthrene-inducible P450 forms are active in RU38486 degradation.  相似文献   
2.

Purpose

The objective of our study was to examine horizontal smooth pursuit performance in strabismic children and in children with vergence deficits, and to compare these data with those recorded in a group of control age-matched children.

Methods

Binocular eye movements were recorded by video-oculography in ten strabismic children (mean age: 9.8±0.8) and seven children with vergence deficits (mean age: 10.8±0.6). Data were compared to that of age-matched control children (mean age: 9.8±0.8 years).

Results

Catch-up saccades amplitude in strabismic children and in children with vergence deficits were significantly higher than in control age-matched children. Moreover, in strabismic children the amplitude of catch-up saccades was significantly higher in rightward than in leftward direction. The number of catch-up saccades was also significantly higher in rightward than in leftward direction. The gain value of pursuits in rightward direction was significantly higher in the right eye than in the left one; for the right eye, the gain value was significantly higher in rightward than in leftward direction. Binocular coordination of pursuit was better in control age-matched children than in children with vergence deficits and than in strabismic children.

Conclusions

Binocular coordination of pursuit is abnormal in children with vergence deficits and worse in strabismic children. Binocular vision plays an important role in improving binocular coordination of pursuit.  相似文献   
3.
In neuroendocrine cells, regulated exocytosis is a multistep process that comprises the recruitment and priming of secretory granules, their docking to the exocytotic sites, and the subsequent fusion of granules with the plasma membrane leading to the release of secretory products into the extracellular space. Using bacterial toxins which specially inactivate subsets of G proteins, we were able to demonstrate that both trimeric and monomeric G proteins directly control the late stages of exocytosis in chromaffin cells. Indeed, in secretagogue-stimulated chromaffin cells, the subplasmalemmal actin cytoskeleton undergoes a specific reorganization that is a prerequisite for exocytosis. Our results suggest that a granule-bound trimeric Go protein controls the actin network surrounding secretory granules through a pathway involving the GTPase RhoA and a downstream phosphatidylinositol 4-kinase. Furthermore, the GTPase Cdc42 plays a active role in exocytosis, most likely by providing specific actin structures to the late docking and/or fusion steps. We propose that G proteins tightly control secretion in neuroendocrine cells by coupling the actin cytoskeleton to the sequential steps underlying membrane trafficking at the site of exocytosis. Our data highlight the use of bacterial toxins, which proved to be powerful tools to dissect the exocytotic machinery at the molecular level.  相似文献   
4.
In neuroendocrine cells, actin reorganization is a prerequisite for regulated exocytosis. Small GTPases, Rho proteins, represent potential candidates coupling actin dynamics to membrane trafficking events. We previously reported that Cdc42 plays an active role in regulated exocytosis in chromaffin cells. The aim of the present work was to dissect the molecular effector pathway integrating Cdc42 to the actin architecture required for the secretory reaction in neuroendocrine cells. Using PC12 cells as a secretory model, we show that Cdc42 is activated at the plasma membrane during exocytosis. Expression of the constitutively active Cdc42(L61) mutant increases the secretory response, recruits neural Wiskott-Aldrich syndrome protein (N-WASP), and enhances actin polymerization in the subplasmalemmal region. Moreover, expression of N-WASP stimulates secretion by a mechanism dependent on its ability to induce actin polymerization at the cell periphery. Finally, we observed that actin-related protein-2/3 (Arp2/3) is associated with secretory granules and that it accompanies granules to the docking sites at the plasma membrane upon cell activation. Our results demonstrate for the first time that secretagogue-evoked stimulation induces the sequential ordering of Cdc42, N-WASP, and Arp2/3 at the interface between granules and the plasma membrane, thereby providing an actin structure that makes the exocytotic machinery more efficient.  相似文献   
5.
Vacuole fusion requires a coordinated cascade of priming, docking, and fusion. SNARE proteins have been implicated in the fusion itself, although their precise role in the cascade remains unclear. We now report that the vacuolar SNAP-23 homologue Vam7p is a mobile element of the SNARE complex, which moves from an initial association with the cis-SNARE complex via a soluble intermediate to the docking site. Soluble Vam7p is specifically recruited to vacuoles and can rescue a fusion reaction poisoned with antibodies to Vam7p. Both the recombinant Vam7p PX domain and a FYVE domain construct of human Hrs block the recruitment of Vam7p and vacuole fusion, demonstrating that phosphatidylinositol 3-phosphate is a primary receptor of Vam7p on vacuoles. We propose that the Vam7p cycle is linked to the availability of a lipid domain on yeast vacuoles, which is essential for coordinating the fusion reaction prior to and beyond docking.  相似文献   
6.
7.

Purpose

We compared postural stability and subjective visual vertical performance in a group of very preterm-born children aged 3-4 years and in a group of age-matched full-term children.

Materials and Methods

A platform (from TechnoConcept) was used to measure postural control in children. Perception of subjective visual vertical was also recorded with posture while the child had to adjust the vertical in the dark or with visual perturbation. Two other conditions (control conditions) were also recorded while the child was on the platform: for a fixation of the vertical bar, and in eyes closed condition.

Results

Postural performance was poor in preterm-born children compared to that of age-matched full-term children: the surface area, the length in medio-lateral direction and the mean speed of the center of pressure (CoP) were significantly larger in the preterm-born children group (p < 0.04, p < 0.01, and p < 0.04, respectively). Dual task in both groups of children significantly affected postural control. The subjective visual vertical (SVV) values were more variable and less precise in preterm-born children.

Discussion-Conclusions

We suggest that poor postural control as well as perception of verticality observed in preterm-born children could be due to immaturity of the cortical processes involved in the motor control and in the treatment of perception and orientation of verticality.  相似文献   
8.
9.
Macrophage infectivity potentiator (MIP) was originally reported to be a chlamydial lipoprotein from experiments showing incorporation of radiolabeled palmitic acid into native and recombinant MIP; inhibition of posttranslational processing of recombinant MIP by globomycin, known to inhibit signal peptidase II; and solubility of native MIP in Triton X-114. However, the detailed structural characterization of the lipid moiety on MIP has never been fully elucidated. In this study, bioinformatics and mass spectrometry analysis, as well as radiolabeling and immunochemical experiments, were conducted to further characterize MIP structure and subcellular localization. In silico analysis showed that the amino acid sequence of MIP is conserved across chlamydial species. A potential signal sequence with a contained lipobox was identified, and a recombinant C20A variant was prepared by replacing the probable lipobox cysteine with an alanine. Both incorporation of U-(14)C-esterified glycerol and [U-(14)C]palmitic acid and posttranslational processing that was inhibitable by globomycin were observed for recombinant wild-type MIP but not for the recombinant C20A MIP variant. The fatty acid contents of native and recombinant MIP were analyzed by gas chromatography-mass spectrometry, and the presence of amide-linked fatty acids in recombinant MIP was investigated by alkaline methanolysis. These results demonstrated a lipid modification in MIP similar to that of other prokaryotic lipoproteins. In addition, MIP was detected in an outer membrane preparation of Chlamydia trachomatis elementary bodies and was shown to be present at the surfaces of elementary bodies by surface biotinylation and surface immunoprecipitation experiments.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号