首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5155篇
  免费   429篇
  国内免费   4篇
  2023年   24篇
  2022年   18篇
  2021年   95篇
  2020年   60篇
  2019年   75篇
  2018年   94篇
  2017年   84篇
  2016年   149篇
  2015年   273篇
  2014年   280篇
  2013年   290篇
  2012年   465篇
  2011年   414篇
  2010年   272篇
  2009年   238篇
  2008年   316篇
  2007年   307篇
  2006年   285篇
  2005年   276篇
  2004年   267篇
  2003年   257篇
  2002年   241篇
  2001年   52篇
  2000年   35篇
  1999年   72篇
  1998年   68篇
  1997年   47篇
  1996年   44篇
  1995年   44篇
  1994年   48篇
  1993年   32篇
  1992年   33篇
  1991年   27篇
  1990年   21篇
  1989年   30篇
  1988年   22篇
  1987年   34篇
  1986年   14篇
  1985年   16篇
  1984年   22篇
  1983年   30篇
  1982年   12篇
  1981年   13篇
  1980年   11篇
  1979年   18篇
  1977年   6篇
  1976年   6篇
  1975年   6篇
  1971年   4篇
  1969年   6篇
排序方式: 共有5588条查询结果,搜索用时 15 毫秒
1.
1. In rat kidney cortex, outer and inner medulla the development of activities of seven enzymes was investigated during postnatal ontogeny (10, 20, 30, 60 and 90 days of age). The enzymes were selected in such a manner, as to characterize most of the main metabolic pathways of energy supplying metabolism: hexokinase (glucose phosphorylation, HK), glycerol-3-phosphate dehydrogenase (glycerolphosphate metabolism or shunt, GPDH), triose phosphate dehydrogenase (glycolytic carbohydrate breakdown, TPDH), lactate dehydrogenase (lactate metabolism, LDH), citrate synthase (tricarboxylic acid cycle, aerobic metabolism, CS), malate NAD dehydrogenase (tricarboxylic acid cycle, intra-extra mitochondrial hydrogen transport, MDH) and 3-hydroxyacyl-CoA-dehydrogenase (fatty acid catabolism, HOADH). 2. The renal cortex already differs metabolically from the medullar structures on the 10th day of life. It displays a high activity of aerobic breakdown of both fatty acids and carbohydrates. Its metabolic capacity further increases up to the 30th day of life. 3. The outer medullar structure is not grossly different from the inner medulla on the 10th day of life. Further it differentiates into a highly aerobic tissue mainly able to utilize carbohydrates. It can, however, to some extent, also utilize fatty acids aerobically and produce lactate from carbohydrates anaerobically. 4. The inner medullar structure is best equipped to utilize carbohydrates by anaerobic glycolysis, forming lactate. This feature is already pronounced on the 10th day of life, its capacity increases to some extent during postnatal development, being highest between the 10th and the 60th day of life.  相似文献   
2.
3.
Pollen isolated from cold treated and precultivated anthers of tobacco (Nicotiana tabacum L. var. Wisconsin 38) were separated into different fractions with counter-current distribution using an aqueous Dextran-polyethylene glycol two-phase system. It was possible to distinguish among eight pollen classes differing in developmental stage and in partitioning. A part of each fraction was cultivated for analysis of embryo formation. This was highest in a fraction with an intermediate to high partition in the phase system. Enriched in this fraction were also pollen that were fairly well stained with acetocarmine, contained several nuclei and had a relatively low mitochondrial activity. The enrichment of embryogenic pollen offers several advantages especially to physiological studies on embryogenesis.  相似文献   
4.
'15N signatures of fossil peat were used to interpret past ecosystem processes on tectonically active subantarctic Macquarie Island. By comparing past vegetation reconstructed from the fossil record with present-day vegetation analogues, our evidence strongly suggests that changes in the '15N signatures of fossil peat at this location reflect mainly past changes in the proportion of plant nitrogen derived from animal sources. Associated with uplift above sea level over the past 8,500 years, fossil records in two peat deposits on the island chronicle a change from coastal vegetation with fur and elephant seal disturbance to the existing inland herbfield. Coupled with this change are synchronous changes in the '15N signatures of peat layers. At two sites 15N-enriched peat '15N signatures of up to +17‰ were associated with a high abundance of pollen of the nitrophile Callitriche antarctica (Callitrichaceae). At one site fossil seal hair was also associated with enriched peat '15N. Less 15N enriched '15N signatures (e.g. -1.9‰ to +3.9‰) were measured in peat layers which lacked animal associated C. antarctica and Acaena spp. Interpretation of a third peat profile indicates continual occupation of a ridge site by burrowing petrels for most of the Holocene. We suggest that 15N signatures of fossil peat remained relatively stable with time once deposited, providing a significant new tool for interpreting the palaeoecology.  相似文献   
5.
Iridoid glycosides are plant defence compounds that are deterrent and/or toxic for unadapted herbivores but are readily sequestered by dietary specialists of different insect orders. Hydrolysis of iridoid glycosides by β‐glucosidase leads to protein denaturation. Insect digestive β‐glucosidases thus have the potential to mediate plant–insect interactions. In the present study, mechanisms associated with iridoid glycoside tolerance are investigated in two closely‐related leaf beetle species (Coleoptera: Chrysomelidae) that feed on iridoid glycoside containing host plants. The polyphagous Longitarsus luridus Scopoli does not sequester iridoid glycosides, whereas the specialist Longitarsus tabidus Fabricius sequesters these compounds from its host plants. To study whether the biochemical properties of their β‐glucosidases correspond to the differences in feeding specialization, the number of β‐glucosidase isoforms and their kinetic properties are compared between the two beetle species. To examine the impact of iridoid glycosides on the β‐glucosidase activity of the generalist, L. luridus beetles are kept on host plants with or without iridoid glycosides. Furthermore, β‐glucosidase activities of both species are examined using an artificial β‐glucosidase substrate and the iridoid glycoside aucubin present in their host plants. Both species have one or two β‐glucosidases with different substrate affinities. Interestingly, host plant use does not influence the specific β‐glucosidase activities of the generalist. Both species hydrolyse aucubin with a much lower affinity than the standard substrate. The neutral pH reduces the β‐glucosidase activity of the specialist beetles by approximately 60% relative to its pH optimum. These low rates of aucubin hydrolysis suggest that the ability to sequester iridoid glycosides has evolved as a key to potentially preventing iridoid glycoside hydrolysis by plant‐derived β‐glucosidases.  相似文献   
6.
W Nagl  F A Popp 《Cytobios》1983,37(145):45-62
There are a number of biological phenomena and events that cannot yet be adequately described, such as cell growth and differentiation, which may be controlled by physical factors. Fr?hlich (1980) has discussed the principles of dissipative structures as applied to electromagnetic interactions in relation to basic couplings in biological systems. Recently, increasing evidence of photon storage and ultraweak photon emission from living systems, particularly from DNA, has suggested the concept of an electromagnetic model of differentiation, based on the known quantum optical properties of nucleic acids. This model has the advantage over all ideas so far published, that it is (1) simple; (2) universally applicable to events in living matter, because it is consistent with both the quantum mechanical and the thermodynamic properties on the one hand, and the known biological and biochemical data and phenomena at the other hand; (3) it not only describes the phenomena and events in terms of pure mathematical parameters, but it can also explain them; and (4) it escapes the difficulty of finding basic control mechanisms, which themselves do not need a regulator, ad infinitum.  相似文献   
7.
8.
Herein, we disclose the discovery and optimization of 2-piperidin-4-yl-acetamide derivatives as MCH-R1 antagonists. Structural investigation of piperidin-4-yl-amide and piperidin-4-yl-ureas identified 2-piperidin-4-yl-acetamide-based MCH-R1 antagonists with outstanding in vivo efficacy but flawed with high affinity towards the hERG potassium channel. While existing hERG SAR information was employed to discover highly potent MCH-R1 antagonists with minimized hERG inhibition, additional hurdles prevented their subsequent clinical exploration.  相似文献   
9.
Planar cell polarity (PCP) controls the orientation of cells within tissues and the polarized outgrowth of cellular appendages. So far, six PCP core proteins including the transmembrane proteins Frizzled (Fz), Strabismus (Stbm) and Flamingo (Fmi) have been identified. These proteins form asymmetric PCP domains at apical junctions of epithelial cells. Here, we demonstrate that VhaPRR, an accessory subunit of the proton pump V‐ATPase, directly interacts with the protocadherin Fmi through its extracellular domain. It also shows a striking co‐localization with PCP proteins during all pupal wing stages in Drosophila. This localization depends on intact PCP domains. Reversely, VhaPRR is required for stable PCP domains, identifying it as a novel PCP core protein. VhaPRR performs an additional role in vesicular acidification as well as endolysosomal sorting and degradation. Membrane proteins, such as E‐Cadherin and the Notch receptor, accumulate at the surface and in intracellular vesicles of cells mutant for VhaPRR. This trafficking defect is shared by other V‐ATPase subunits. By contrast, the V‐ATPase does not seem to have a direct role in PCP regulation. Together, our results suggest two roles for VhaPRR, one for PCP and another in endosomal trafficking. This dual function establishes VhaPRR as a key factor in epithelial morphogenesis.  相似文献   
10.
Schwinning  Susanne 《Plant and Soil》2020,454(1-2):49-56
Plant and Soil - The paper by Korboulewsky and co-authors in this issue of Plant and Soil address some of the central questions of critical zone ecohydrology: how do plants interact with rocks that...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号