首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   63篇
  免费   3篇
  2022年   1篇
  2021年   3篇
  2018年   1篇
  2017年   1篇
  2016年   1篇
  2015年   3篇
  2014年   2篇
  2013年   8篇
  2012年   5篇
  2011年   5篇
  2010年   8篇
  2009年   5篇
  2008年   7篇
  2007年   3篇
  2006年   3篇
  2005年   2篇
  2004年   1篇
  2003年   1篇
  2001年   4篇
  1999年   1篇
  1967年   1篇
排序方式: 共有66条查询结果,搜索用时 234 毫秒
1.
Coleoptile and root tips ofTriticum aestivum cv. Arnej 624 and those ofAvena sativa cv. Victory (Svalöf) as well as dry excised embryos ofTriticum aestivum cv. Rival (Svalöf) and those ofArachis hypogaea cv. 34 3A. H. were cultivated in media containing various concentrations of sucrose and growth regulators, like ascorbic acid, indole-3-acetic acid and gibberellin. Growth, differentiation and water uptake of the various explants were determined at regular time intervals. Further, the concentration of the endogenous ascorbic acid in mg./g. fresh weight, as well as the amount of this growth regulator utilized as per cent of the total were determined. Although all the three growth regulators promote growth in the explants, their effect is best felt when sucrose of a higher concentration (1.0 per cent) is added to the medium. In fact, the response to 1.0 per cent sucrose is sometimes as good as a combination of a growth regulator with sucrose, especially in the case of root explants. The results clearly indicate that the biosynthesis of ascorbic acid in the explants is catalyzed by the addition of indole-3-acetic acid as well as gibberellin. Simultaneously, the utilization of ascorbic acid is also appreciably increased by the presence of these growth regulators. Addition of 1.0 per cent sucrose to the medium containing the above mentioned growth regulators augments to a considerable extent not only the concentration of ascorbic acid, but also steps up its utilization. Enhancement of ascorbic acid as well as its increased utilization are correlated with rapid imbibition of water, growth and differentiation. The role of ascorbic acid in growth is discussed; and on the basis of the data presented here it is postulated that: (1) auxin and gibberellin function in the growth process by catalyzing the biosynthesis of ascorbic acid; and (2) that ascorbic acid not only participates in activation of various enzyme systems, but also stimulates the production of adenosine triphosphate by acting as an electron donor in photosynthetic phosphorylation as well as oxidative phosphorylation; (3) that the above action of ascorbic acid creates a favourable redox balance for synthesis of nucleic acids, proteins, enzymeproteins, and cell-wall constituents, thus enabling the processes of cell division and enlargement to proceed at a fast rate; and (4) that the relative rates of cell division and cell enlargement as well as “ageing” will determine the pattern of plant development.  相似文献   
2.
Virus recognition and response by the innate immune system are critical components of host defense against infection. Activation of cell-intrinsic immunity and optimal priming of adaptive immunity against West Nile virus (WNV), an emerging vector-borne virus, depend on recognition by RIG-I and MDA5, two cytosolic pattern recognition receptors (PRRs) of the RIG-I-like receptor (RLR) protein family that recognize viral RNA and activate defense programs that suppress infection. We evaluated the individual functions of RIG-I and MDA5 both in vitro and in vivo in pathogen recognition and control of WNV. Lack of RIG-I or MDA5 alone results in decreased innate immune signaling and virus control in primary cells in vitro and increased mortality in mice. We also generated RIG-I−/− × MDA5−/− double-knockout mice and found that a lack of both RLRs results in a complete absence of innate immune gene induction in target cells of WNV infection and a severe pathogenesis during infection in vivo, similar to findings for animals lacking MAVS, the central adaptor molecule for RLR signaling. We also found that RNA products from WNV-infected cells but not incoming virion RNA display at least two distinct pathogen-associated molecular patterns (PAMPs) containing 5′ triphosphate and double-stranded RNA that are temporally distributed and sensed by RIG-I and MDA5 during infection. Thus, RIG-I and MDA5 are essential PRRs that recognize distinct PAMPs that accumulate during WNV replication. Collectively, these experiments highlight the necessity and function of multiple related, cytoplasmic host sensors in orchestrating an effective immune response against an acute viral infection.  相似文献   
3.
As with many viruses, rabies virus (RABV) infection induces type I interferon (IFN) production within the infected host cells. However, RABV has evolved mechanisms by which to inhibit IFN production in order to sustain infection. Here we show that RABV infection of dendritic cells (DC) induces potent type I IFN production and DC activation. Although DCs are infected by RABV, the viral replication is highly suppressed in DCs, rendering the infection non-productive. We exploited this finding in bone marrow derived DCs (BMDC) in order to differentiate which pattern recognition receptor(s) (PRR) is responsible for inducing type I IFN following infection with RABV. Our results indicate that BMDC activation and type I IFN production following a RABV infection is independent of TLR signaling. However, IPS-1 is essential for both BMDC activation and IFN production. Interestingly, we see that the BMDC activation is primarily due to signaling through the IFNAR and only marginally induced by the initial infection. To further identify the receptor recognizing RABV infection, we next analyzed BMDC from Mda-5−/− and RIG-I−/− mice. In the absence of either receptor, there is a significant decrease in BMDC activation at 12h post infection. However, only RIG-I−/− cells exhibit a delay in type I IFN production. In order to determine the role that IPS-1 plays in vivo, we infected mice with pathogenic RABV. We see that IPS-1−/− mice are more susceptible to infection than IPS-1+/+ mice and have a significantly increased incident of limb paralysis.  相似文献   
4.
The innate immune response is essential for controlling West Nile virus (WNV) infection but how this response is propagated and regulates adaptive immunity in vivo are not defined. Herein, we show that IPS-1, the central adaptor protein to RIG-I-like receptor (RLR) signaling, is essential for triggering of innate immunity and for effective development and regulation of adaptive immunity against pathogenic WNV. IPS-1−/− mice exhibited increased susceptibility to WNV infection marked by enhanced viral replication and dissemination with early viral entry into the CNS. Infection of cultured bone-marrow (BM) derived dendritic cells (DCs), macrophages (Macs), and primary cortical neurons showed that the IPS-1-dependent RLR signaling was essential for triggering IFN defenses and controlling virus replication in these key target cells of infection. Intriguingly, infected IPS-1−/− mice displayed uncontrolled inflammation that included elevated systemic type I IFN, proinflammatory cytokine and chemokine responses, increased numbers of inflammatory DCs, enhanced humoral responses marked by complete loss of virus neutralization activity, and increased numbers of virus-specific CD8+ T cells and non-specific immune cell proliferation in the periphery and in the CNS. This uncontrolled inflammatory response was associated with a lack of regulatory T cell expansion that normally occurs during acute WNV infection. Thus, the enhanced inflammatory response in the absence of IPS-1 was coupled with a failure to protect against WNV infection. Our data define an innate/adaptive immune interface mediated through IPS-1-dependent RLR signaling that regulates the quantity, quality, and balance of the immune response to WNV infection.  相似文献   
5.
A novel series of oxime containing benzyl-1,3-dioxane-r-2-carboxylic acid derivatives (6a-k) were designed as selective PPARα agonists, through bioisosteric modification in the lipophilic tail region of PPARα/γ dual agonist. Some of the test compounds (6a, 6b, 6c and 6f) showed high selectivity towards PPARα over PPARγ in vitro. Further, highly potent and selective PPARα agonist 6c exhibited significant antihyperglycemic and antihyperlipidemic activity in vivo, along with its improved pharmacokinetic profile. Favorable in-silico interaction of 6c with PPARα binding pocket correlate its in vitro selectivity profile toward PPARα over PPARγ. Together, these results confirm discovery of novel series of oxime based selective PPARα agonists for the safe and effective treatment of various metabolic disorders.  相似文献   
6.
7.
The importance of earthworms in metal pollution monitoring is widely recognized in terrestrial ecosystems. Metal bioaccumulation by soil-dwelling earthworms can be used as an ecological indicator of metal availability in soils. In this study, we quantify the level of DTPA extractable metals in casts and tissues of earthworms (endogeic: Metaphire posthuma (Vaillant) and anecic: Lampito mauritii Kinberg) and ingesting soils, collected form cultivated land, urban garden and sewage soils. Soil and worm casts collected from sewage and cultivated land showed the greater metal concentrations. The concentration of Zn, Fe, Pb and Mn in earthworm casts was in the order: sewage soil > cultivated land > urban garden, while for Cu and Cd the order was cultivated land > sewage soil > urban garden. Data suggested that the level of DTPA extractable metals was higher than that of surrounding soils. We got close relationships between metal concentration in worm tissues and surrounding soils: Zn (r2 = 0.94 and 0.89, P < 0.01 for both), Fe (r2 = 0.95 and 0.97, P < 0.01 for both), Cu (r2 = 0.93 and 0.96, P < 0.01), Pb (0.63, P < 0.01 and 0.57, P > 0.05), and Cd (r2 = 0.15, P > 0.01 and 0.75, P < 0.01), respectively, for M. posthuma and L. mauritii. The study clearly indicates that earthworms have efficient potentials for bioaccumulation of metals in their tissues which can be used as an ecological indicator of soil contaminations. A species-specific metal accumulation pattern was observed in studied earthworms. Comparatively, endogeic showed the higher metal contents in their tissues than anecic (t-test: P < 0.05); collected form different habitats studied. Data suggested that species-specific feeding behaviour, earthworm niche structure, ecological category of inhabiting earthworm and even horizontal distribution of contaminants in soil layers are some major determinant for metal accumulation patterns in soil dwelling earthworms. The difference in burrowing patterns can influence the patterns of metal bioaccumulations between endogeic and anecic, although other factors are also contributory. Further more detailed study is still required to elaborate the proposed hypothesis.  相似文献   
8.
9.
The emergence of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has resulted in a pandemic causing significant damage to public health and the economy. Efforts to understand the mechanisms of Coronavirus Disease 2019 (COVID-19) have been hampered by the lack of robust mouse models. To overcome this barrier, we used a reverse genetic system to generate a mouse-adapted strain of SARS-CoV-2. Incorporating key mutations found in SARS-CoV-2 variants, this model recapitulates critical elements of human infection including viral replication in the lung, immune cell infiltration, and significant in vivo disease. Importantly, mouse adaptation of SARS-CoV-2 does not impair replication in human airway cells and maintains antigenicity similar to human SARS-CoV-2 strains. Coupled with the incorporation of mutations found in variants of concern, CMA3p20 offers several advantages over other mouse-adapted SARS-CoV-2 strains. Using this model, we demonstrate that SARS-CoV-2–infected mice are protected from lethal challenge with the original Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV), suggesting immunity from heterologous Coronavirus (CoV) strains. Together, the results highlight the use of this mouse model for further study of SARS-CoV-2 infection and disease.

Studying cross-protection from different coronaviruses is important to inform the research for a universal vaccine. This study uses a mouse-adapted SARS-CoV-2 strain to show that it confers protection from SARS-CoV challenge, suggesting possible immunity from heterologous challenge following natural infection.  相似文献   
10.
Signalling pathways leading to type I interferon production are the first line of defence employed by the host to combat viruses, and represent a barrier that an invading virus must overcome in order to establish infection. In this review we highlight the ability of two members of the Flaviviridae, a globally distributed family of RNA viruses that represent a significant public health concern, to disrupt and evade these defences. Hepatitis C virus is a hepatotropic virus, infecting greater than 170 million people worldwide, while West Nile virus is a neurotropic virus that causes encephalitis in humans and horses. While these viruses cause distinct disease phenotypes, the ability of pathogenic strains to modulate the innate immune response is a key factor in influencing disease outcome. Both viruses have evolved unique strategies to target various aspects of type I interferon induction and signalling in order to prevent viral clearance and to promote virus replication.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号