首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
  2014年   1篇
  2013年   1篇
排序方式: 共有2条查询结果,搜索用时 46 毫秒
1
1.
Tetrahydrobiopterin (BH4) is a required cofactor for the synthesis of NO by NOS. Bioavailability of BH4 is a critical factor in regulating the balance between NO and superoxide production by endothelial NOS (eNOS coupling). Crystal structures of the mouse inducible NOS oxygenase domain reveal a homologous BH4-binding site located in the dimer interface and a conserved tryptophan residue that engages in hydrogen bonding or aromatic stacking interactions with the BH4 ring. The role of this residue in eNOS coupling remains unexplored. We overexpressed human eNOS W447A and W447F mutants in novel cell lines with tetracycline-regulated expression of human GTP cyclohydrolase I, the rate-limiting enzyme in BH4 synthesis, to determine the importance of BH4 and Trp-447 in eNOS uncoupling. NO production was abolished in eNOS-W447A cells and diminished in cells expressing W447F, despite high BH4 levels. eNOS-derived superoxide production was significantly elevated in W447A and W447F versus wild-type eNOS, and this was sufficient to oxidize BH4 to 7,8-dihydrobiopterin. In uncoupled, BH4-deficient cells, the deleterious effects of W447A mutation were greatly exacerbated, resulting in further attenuation of NO and greatly increased superoxide production. eNOS dimerization was attenuated in W447A eNOS cells and further reduced in BH4-deficient cells, as demonstrated using a novel split Renilla luciferase biosensor. Reduction of cellular BH4 levels resulted in a switch from an eNOS dimer to an eNOS monomer. These data reveal a key role for Trp-447 in determining NO versus superoxide production by eNOS, by effects on BH4-dependent catalysis, and by modulating eNOS dimer formation.  相似文献   
2.

Objective

Aim of this study was to identify the nitric oxide synthase (NOS) isoform involved in early microcirculatory derangements following solid organ transplantation.

Background

Tetrahydrobiopterin donor treatment has been shown to specifically attenuate these derangements following pancreas transplantation, and tetrahydrobiopterin-mediated protective effects to rely on its NOS-cofactor activity, rather than on its antioxidant capacity. However, the NOS-isoform mainly involved in this process has still to be defined.

Methods

Using a murine pancreas transplantation model, grafts lacking one of the three NOS-isoforms were compared to grafts from wild-type controls. Donors were treated with either tetrahydrobiopterin or remained untreated. All grafts were subjected to 16 h cold ischemia time and transplanted into wild-type recipients. Following 4 h graft reperfusion, microcirculation was analysed by confocal intravital fluorescence microscopy. Recipient survival was monitored for 50 days.

Results

Transplantation of the pancreas from untreated wild-type donor mice resulted in microcirculatory damage of the transplanted graft and no recipient survived more than 72 h. Transplanting grafts from untreated donor mice lacking either endothelial or inducible NOS led to similar outcomes. In contrast, donor treatment with tetrahydrobiopterin prevented microcirculatory breakdown enabling long-term survival. Sole exception was transplantation of grafts from untreated donor mice lacking neuronal NOS. It resulted in intact microvascular structure and long-term recipient survival, either if donor mice were untreated or treated with tetrahydrobiopterin.

Conclusion

We demonstrate for the first time the crucial involvement of neuronal NOS in early microcirculatory derangements following solid organ transplantation. In this model, protective effects of tetrahydrobiopterin are mediated by targeting this isoform.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号