首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
  2018年   1篇
  2017年   1篇
  2016年   1篇
  2015年   1篇
  2011年   1篇
  2009年   1篇
排序方式: 共有6条查询结果,搜索用时 15 毫秒
1
1.
Viral infections can affect the glycosylation pattern of glycoproteins involved in antiviral immunity. Given the importance of protein glycosylation for immune function, we investigated the effect that modulation of the highly conserved HLA class I N-glycan has on KIR:HLA interactions and NK cell function. We focused on HLA-B*57:01 and its interaction with KIR3DL1, which has been shown to play a critical role in determining the progression of a number of human diseases, including human immunodeficiency virus-1 infection. 721.221 cells stably expressing HLA-B*57:01 were treated with a panel of glycosylation enzyme inhibitors, and HLA class I expression and KIR3DL1 binding was quantified. In addition, the functional outcomes of HLA-B*57:01 N-glycan disruption/modulation on KIR3DL1ζ+ Jurkat reporter cells and primary human KIR3DL1+ NK cells was assessed. Different glycosylation enzyme inhibitors had varying effects on HLA-B*57:01 expression and KIR3DL1-Fc binding. The most remarkable effect was that of tunicamycin, an inhibitor of the first step of N-glycosylation, which resulted in significantly reduced KIR3DL1-Fc binding despite sustained expression of HLA-B*57:01 on 721.221 cells. This effect was paralleled by decreased activation of KIR3DL1ζ+ Jurkat reporter cells, as well as increased degranulation of primary human KIR3DL1+ NK cell clones when encountering HLA-B*57:01-expressing 721.221 cells that were pre-treated with tunicamycin. Overall, these results demonstrate that N-glycosylation of HLA class I is important for KIR:HLA binding and has an impact on NK cell function.  相似文献   
2.
Pseudomonas aeruginosa, a Gram-negative, rod-shaped bacterium causes widespread diseases in humans. This bacterium is frequently related to nosocomial infections such as pneumonia, urinary tract infections (UTIs) and bacteriaemia especially in immunocompromised patients. The current review focuses on the recent perspectives on biofilms formation by these bacteria. Biofilms are communities of microorganisms in which cells stick to each other and often adhere to a surface. These adherent cells are usually embedded within a self-produced matrix of extracellular polymeric substance (EPS). Pel, psl and alg operons present in P. aeruginosa are responsible for the biosynthesis of extracellular polysaccharide which plays an important role in cell surface interactions during biofilm formation. Recent studies suggested that cAMP signalling pathway, quorum-sensing pathway, Gac/Rsm pathway and c-di-GMP signalling pathway are the main mechanism that leads to the biofilm formation. Understanding the bacterial virulence depends on a number of cell-associated and extracellular factors and is very essential for the development of potential drug targets. Thus, the review focuses on the major genes involved in the biofilm formation, the state of art update on the biofilm treatment and the dispersal approaches such as targeting adhesion and maturation, targeting virulence factors and other strategies such as small molecule-based inhibitors, phytochemicals, bacteriophage therapy, photodynamic therapy, antimicrobial peptides and natural therapies and vaccines to curtail the biofilm formation by P. aeruginosa.  相似文献   
3.
Indoor air quality and heat exposure have become an important occupational health and safety concern in several workplaces including kitchens of hotels. This study investigated the heat, particulate matter (PM), total volatile organic compounds (TVOCs) and polycyclic aromatic hydrocarbons (PAHs) emissions in indoor air of commercial kitchen and its association with kidney dysfunctions among kitchen workers. A cross sectional study was conducted on 94 kitchen workers employed at commercial kitchen in Lucknow city, North India. A questionnaire-based survey was conducted to collect the personal and occupational history of the kitchen workers. The urine analysis for specific gravity and microalbuminuria was conducted among the study subjects. Indoor air temperature, humidity, wet/ dry bulb temperature and humidex heat stress was monitored during cooking activities at the kitchen. Particulate matter (PM) for 1 and 2.5 microns were monitored in kitchen during working hours using Hazdust. PAHS in indoor air was analysed using UHPLC. Urinary hydroxy-PAHs in kitchen workers were measured using GC/MS-MS. Higher indoor air temperature, relative humidity, PM1 and PM2.5 (p<0.001) was observed in the kitchen due to cooking process. Indoor air PAHs identified are Napthalene, fluorine, acenaphthene, phenanthrene, pyrene, chrysene and indeno [1,2,3-cd) pyrene. Concentrations of all PAHs identified in kitchen were above the permissible OSHA norms for indoor air. Specific gravity of urine was significantly higher among the kitchen workers (p<0.001) as compared to the control group. Also, the prevalence of microalbuminuria was higher (p<0.001) among kitchen workers. Urinary PAH metabolites detected among kitchen workers were 1-NAP, 9-HF, 3-HF, 9-PHN and 1-OHP. Continuous heat exposure in kitchens due to cooking can alter kidney functions viz., high specific gravity of urine in kitchen workers. Exposure to PM, VOCs and PAHs in indoor air and presence of urinary PAHs metabolites may lead to inflammation, which can cause microalbuminuria in kitchen workers, as observed in the present study.  相似文献   
4.
A polyaromatic hydrocarbon degrading bacterium was isolated from a petroleum contaminated site and designated as Stenotrophomonas sp. strain IITR87. It was found to utilize pyrene, phenanthrene and benzo(a)pyrene as sole carbon source, but not anthracene, chrysene and fluoranthene. Gas chromatography and mass spectroscopy analysis resulted in identification of pyrene metabolites namely monohydroxypyrene, 4-oxa-pyrene-5-one, dimethoxypyrene and monohydroxyphenanthrene. Southern hybridization using naphthalene dioxygenase gene (nidA) as probe against the DNA of strain IITR87 revealed the presence of nidA gene. PCR analysis suggests dispersed occurrence of nid genes in the genome instead of a cluster as reported in a PAH-degrading Mycobacterium vanbaalenii PYR-1. The nid genes in strain IITR87, dioxygenase large subunit (nidA), naphthalene dioxygenase small subunit (nidB) and aldehyde dehydrogenase gene (nidD) showed more than 97 % identity to the reported nid genes from Mycobacterium vanbaalenii PYR-1. Most significantly, the biodegradation of PAHs was enhanced 25–60 % in the presence of surfactants rhamnolipid and Triton X-100 due to increased solubilization and bioavailability. These results could be useful for the improved biodegradation of high-molecular-weight PAHs in contaminated habitats.  相似文献   
5.
6.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号