首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14篇
  免费   0篇
  2018年   1篇
  2016年   1篇
  2015年   1篇
  2013年   1篇
  2012年   1篇
  2011年   1篇
  2007年   2篇
  2005年   1篇
  2000年   1篇
  1994年   1篇
  1991年   1篇
  1990年   1篇
  1962年   1篇
排序方式: 共有14条查询结果,搜索用时 787 毫秒
1.

Background

Schistosomiasis affects nearly 40 million women of reproductive age, and is known to elicit a pro-inflammatory signature in the placenta. We have previously shown that antigens from schistosome eggs can elicit pro-inflammatory cytokine production from trophoblast cells specifically; however, the influence of these antigens on other characteristics of trophoblast function, particularly as it pertains to placentation in early gestation, is unknown. We therefore sought to determine the impact of schistosome antigens on key characteristics of first trimester trophoblast cells, including migration and invasion.

Methods

First trimester HTR8/SVneo trophoblast cells were co-cultured with plasma from pregnant women with and without schistosomiasis or schistosome soluble egg antigens (SEA) and measured cytokine, cellular migration, and invasion responses.

Results

Exposure of HTR8 cells to SEA resulted in a pro-inflammatory, anti-invasive signature, characterized by increased pro-inflammatory cytokines (IL-6, IL-8, MCP-1) and TIMP-1. Additionally, these cells displayed 62% decreased migration and 2.7-fold decreased invasion in vitro after treatment with SEA. These results are supported by increased IL-6 and IL-8 in the culture media of HTR8 cells exposed to plasma from Schistosoma japonica infected pregnant women.

Conclusions

Soluble egg antigens found in circulation during schistosome infection increase pro-inflammatory cytokine production and inhibit the mobility and invasive characteristics of the first trimester HTR8/SVneo trophoblast cell line. This is the first study to assess the impact of schistosome soluble egg antigens on the behavior of an extravillous trophoblast model and suggests that schistosomiasis in the pre-pregnancy period may adversely impact placentation and the subsequent health of the mother and newborn.  相似文献   
2.
Rice straw (RS) may serve as a low-cost biomass for the production of biofuels and biochemicals, but its native structure is resistant to enzymatic and microbial deconstruction. Therefore, an efficient pre-treatment method is required to modify crystalline cellulose to a more reactive amorphous form. This work investigated pre-treatments of rice straw involving size reduction (S) followed by either sodium hydroxide (NaOH) or diluted sulfuric acid (H2SO4) and liquid hot water (LHW). The shrinkage of the vascular bundles in the rice straw structure pre-treated with NaOH–LHW–S was higher than that with LHW–S and H2SO4–LHW–S pre-treatments. The highest levels of total fermentative products and residual sugars were obtained at the concentrations of 7.8 ± 0.2 and 2.1 ± 0.3 g/L, respectively, after fermentation by Clostridium cellulolyticum for NaOH–LHW–S pre-treated rice straw at 121 °C for 120 min. Overall, the combined physicochemical pre-treatment of RS led to improved microbial hydrolysis during cellulose degradation at the percentage of 85.5 ± 0.5.  相似文献   
3.
4.
IGF-I stimulates cell growth through interaction of the IGF receptor with multiprotein signaling complexes. However, the mechanisms of IGF-I receptor-mediated signaling are not completely understood. We have previously shown that IGF-I-stimulated 3T3-L1 cell proliferation is dependent on Src activation of the ERK-1/2 MAPK pathway. We hypothesized that IGF-I activation of the MAPK pathway is mediated through integrin activation of Src-containing signaling complexes. The disintegrin echistatin decreased IGF-I phosphorylation of Src and MAPK, and blocking antibodies to (alpha)v and beta3 integrin subunits inhibited IGF-I activation of MAPK, suggesting that (alpha)v(beta)3 integrins mediate IGF-I mitogenic signaling. IGF-I increased ligand binding to (alpha)v(beta)3 as detected by immunofluorescent staining of ligand-induced binding site antibody and stimulated phosphorylation of the beta3 subunit, consistent with inside-out activation of (alpha)v(beta)3 integrins. IGF-I increased tyrosine phosphorylation of the focal adhesion kinase (FAK) Pyk2 (calcium-dependent proline-rich tyrosine kinase-2) to a much greater extent than FAK, and increased association of Src with Pyk2 but not FAK. The intracellular calcium chelator BAPTA prevented IGF-I phosphorylation of Pyk2, Src, and MAPK, suggesting that IGF-I activation of Pyk2 is calcium dependent. Transient transfection with a dominant-negative Pyk2, which lacks the autophosphorylation and Src binding site, decreased IGF-I activation of MAPK, but no inhibition was seen with transfected wild-type Pyk2. These results indicate that IGF-I signaling to MAPK is dependent on inside-out activation of (alpha)v(beta)3 integrins and integrin-facilitated multiprotein complex formation involving Pyk2 activation and association with Src.  相似文献   
5.
Applied Microbiology and Biotechnology - Escherichia coli KJ122 was previously engineered to produce high concentration and yield of succinate in mineral salt medium containing glucose and sucrose...  相似文献   
6.
Sucrose-utilizing genes (cscKB and cscA) from Escherichia coli KO11 were cloned and expressed in a metabolically engineered E. coli KJ122 to enhance succinate production from sucrose. KJ122 harboring a recombinant plasmid, pKJSUC, was screened for the efficient sucrose utilization by growth-based selection and adaptation. KJ122-pKJSUC-24T efficiently utilized sucrose in a low-cost medium to produce high succinate concentration with less accumulation of by-products. Succinate concentrations of 51 g/L (productivity equal to 1.05 g/L/h) were produced from sucrose in anaerobic bottles, and concentrations of 47 g/L were produced in 10 L bioreactor within 48 h. Antibiotics had no effect on the succinate production by KJ122-pKJSUC-24T. In addition, succinate concentrations of 62 g/L were produced from sugarcane molasses in anaerobic bottles, and concentrations of 56 g/L in 10 L bioreactor within 72 h. These results demonstrated that KJ122-pKJSUC-24T would be a potential strain for bio-based succinate production from sucrose and sugarcane molasses.  相似文献   
7.
During embryonic development the rates of oxygen consumption and weight loss rise gradually. Total O2 consumption, like total weight losses previously reported, rises at lower incubation temperatures, and at minimal incubation temperatures is nearly double that at an optimal temperature. The Q10 for oxygen consumption rises from 3.0 at the start of development to 3.7 and then drops to 3.25 shortly before hatching. After hatching the rate of O2 consumption rises 50% and the Q10 drops to about 2.Eggs transferred from a minimal (15°) to an optimal (25°) temperature show a transitory overshoot in rate of O2 consumption. Following such transfers, O2 consumption rates are the same as for eggs being incubated under the same but constant temperatures.Calculations show that there is an unexpectedly large retardation of development at near minimal temperatures. Even a short daily exposure to a favorable temperature ameliorates the retarding and debilitating effects of incubation at minimal temperatures. As a result less O2 is consumed and less weight lost than at corresponding constant temperatures. The significance of these data is discussed.
Zusammenfassung Während der Embryonalentwicklung verläuft der Sauerstoffverbrauch streng gekoppelt mit der Gewichtsabnahme; beide steigern sich mit der Entwicklung allmählich. Wie die früher beschriebene Gewichtsabnahme, so nimmt auch der Gesamtsauerstoffverbrauch bei niederen Temperaturen zu und ist bei minimalen Inkubationstemperaturen fast doppelt so groß wie bei optimaler Inkubationstemperatur. Der Q10 für den Sauerstoffverbrauch steigt von 3,0 bei Beginn der Entwicklung auf 3,7 und fällt dann auf ungefähr 3,25 kurz vor dem Schlüpfen. Nach dem Schlüpfen, wenn die Muskelaktivität eine größere Rolle spielt, steigt der O2-Verbrauch auf etwa 50%, aber der Q10 fällt auf etwa 2.Wenn die Eier von einer minimalen in eine optimale Temperatur übertragen werden, ergibt sich ein vorübergehender Überschuß in der O2 Verbrauchsrate. Solchen Übertragungen (von 15° nach 25° und zurück) folgend, gleichen die Sauerstoff-Verbrauchsraten denen von Eiern, die konstant unter diesen Temperaturen gehalten wurden.Die verwirrende Frage, warum der Gesamtsauerstoffverbrauch und der Gesamtgewichtsverlust geringer sind, wenn die Eier bei minimaler Mitteltemperatur abwechselnd in hoher und niederer Temperatur gehalten werden, im Gegensatz zu konstanten Inkubationstemperaturen, wird auf Grund von Berechnungen interpretiert, die zeigen, daß in der Nähe minimaler Temperaturen eine unerwartet große Entwicklungsverzögerung eintritt. Es scheint, daß sogar ein kurzer täglicher Aufenthalt in einer günstigen Temperatur die verzögernden und abschwächenden Wirkungen minimaler Inkubationstemperaturen verbessert. Wahrscheinlich erfordem gewisse Stoffwechselprozesse Temperaturen von 20° oder mehr, aber die Entwicklung selbst kann bei beträchtlich niedrigeren Temperaturen vorwärtsschreiten; die Natur einer solcherart möglichen biochemischen Insuffizienz bleibt zu klären.Es scheint klar, daß die bei der Berechnung von mittleren Temperaturen und Tages-Grad-Anhäufungen angenommene Linearität nicht zutrifft, wenn sie auf die gekrümmten Wachstumskurven der Insekten angewandt werden.


Paper No. 4808, Scientific Journal Series, Minnesota Agricultural Experiment Station, St. Paul 1, Minnesota.  相似文献   
8.
The growth of four tropical legumes (Cajanus cajan, Sesbania aculeata, S. rostrata, and S. speciosa) used as green manures in the tropics was studied in a glasshouse experiment. Two acid sulfate soils (Typic Sulfaquept, Bang Pakong Series; and Sulfic Tropaquept, Rangsit Series) were adjusted to four pH levels: 3.8 or 4.0 (original soil pH), 4.5, 5.5, and 6.5 (amended with lime). Dry weight was determined 49 days after sowing. Concentrations of N, P, K, Ca, Mg, Fe, Mn, and Al were also determined in aerial plant parts at harvest.The legumes responded differently to soil acidity and liming, but not to soil type. Cajanus cajan had the highest biomass production, followed by S. aculeata, S. rostrata and S. speciosa, in this order. The N concentration closely paralleled biomass production, suggesting that the growth of symbiotic rhizobia and nodulation were perhaps more susceptible to soil acidity than were the host plants. Liming to pH 5.5–6.0 was recommended for the legumes' growth based on the quadratic relationships between dry-matter yield and soil pH. In the unlimed soils, the Ca concentration in C. cajan and S. aculeata (0.32%) was twice as high as that in the two low-yielding legumes (0.15%). Furthermore, plant Ca increased exponentially (or quadratically in case of S. speciosa) as lime additions increased. It was estimated that for adequate growth, the Ca requirement in the shoot dry matter was approximately: C. cajan 1.2% Ca, S. aculeata 0.8%, S. rostrata 0.6%, and S. speciosa 0.4%. In contrast with Ca, the concentration of Fe, and to a lesser extent Mn, was significantly lower in C. cajan and S. aculeata than in S. rostrata and S. speciosa. The ratio of Ca to Al in plant tops was used to characterize plant tolerance to soil acidity, and to quantify the critical Al concentration in the plants. It appears that 90% maximum growth was attained only when Ca/Al was 150 for C. cajan and S. speciosa, 200 for S. rostrata, and 300 for S. aculeata. Cajanus cajan tolerated up to 80 mg Al kg-1 in the shoot dry matter, whereas significant growth reduction occurred in the Sesbania species at levels > 30 mg Al kg-1.  相似文献   
9.
10.
Objective: Epidermal growth factor (EGF) stimulates proliferation in 3T3‐L1 preadipocytes, but EGF action in differentiation is less clear. EGF promotes differentiation at concentrations <1 nM but inhibits differentiation at higher concentrations, suggesting a dual role in adipogenesis. We hypothesized that differences in EGF receptor activation and downstream signaling mediate distinct biological effects of EGF at low vs. high abundance. Research Methods and Procedures: We compared the effects of low (0.1 nM) vs. high (10 nM) EGF on the activation of EGF receptors, proximal signaling molecules Src and Shc, and the downstream mitogen‐activated protein kinase (MAPK) pathways extracellular regulated kinase (ERK) and p38 in proliferating and differentiated 3T3‐L1 cells. Results: Both low and high EGF activated ERK and p38 in preadipocytes. Src inhibitors PP1 and PP2 blocked ERK and p38 activation by low but not high EGF, and only high EGF increased Shc phosphorylation. Selective inhibition of the EGF receptor (EGFR) with AG1478 blocked ERK and p38 activation at both concentrations; however, selective inhibition of the ErbB2 receptor (EB2R) with AG825 or small interfering RNA (siRNA) blocked low but not high EGF activation of ERK and p38. Coimmunoprecipitation of EGFR with EB2R and Src was observed with low EGF in preadipocytes but at both concentrations in adipocytes. EB2R inhibition during differentiation decreased p38 activity and peroxisome proliferator‐activated receptor γ (PPARγ) abundance. Discussion: Our results show that EGFR homodimers mediate action of EGF at high abundance, but at low abundance, EGF promotes differentiation through EGFR/EB2R heterodimer activation of Src and p38. These results may partially explain the observations that high EGF concentrations inhibit, whereas low concentrations support, preadipocyte differentiation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号