首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14篇
  免费   1篇
  2020年   1篇
  2016年   1篇
  2015年   2篇
  2014年   1篇
  2013年   1篇
  2012年   2篇
  2011年   1篇
  2010年   2篇
  2009年   2篇
  2008年   1篇
  2005年   1篇
排序方式: 共有15条查询结果,搜索用时 519 毫秒
1.
Hong  Sung Hyun  Singh  Sudhir  Tripathi  Bhumi Nath  Mondal  Suvendu  Lee  Sangmin  Jung  Hyun Suk  Cho  Chuloh  Kaur  Shubhpreet  Kim  Jin-Hong  Lee  Sungbeom  Bai  Hyoung-Woo  Bae  Hyeun-Jong  Lee  Sang Yeol  Lee  Seung Sik  Chung  Byung Yeoup 《Protoplasma》2020,257(3):807-817
Protoplasma - Alkyl hydroperoxide reductase subunit F (AhpF) is a well-known flavoprotein that transfers electrons from pyridine nucleotides to the peroxidase protein AhpC via redox-active...  相似文献   
2.
Serotonin derivatives belong to a class of phenylpropanoid amides found at low levels in a wide range of plant species. Representative serotonin derivatives include feruloylserotonin (FS) and 4-coumaroylserotonin (CS). Since the first identification of serotonin derivatives in safflower seeds, their occurrence, biological significance, and pharmacological properties have been reported. Recently, serotonin N-hydroxycinnamoyl transferase (SHT), which is responsible for the synthesis of serotonin derivatives, was cloned from pepper (Capsicum annuum) and characterized in terms of its enzyme kinetics. Using the SHT gene, many attempts have been made to either increase the level of serotonin derivatives in transgenic plants or produce serotonin derivatives de novo in microbes by dual expression of key genes such as SHT and 4-coumarate-CoA ligase (4CL). Due to the strong antioxidant activity and other therapeutic properties of serotonin derivatives, these compounds may have high potential in treatment and prophylaxis, as cosmetic ingredients, and as major components of functional foods or feeds that have health-improving effects. This review examines the biosynthesis of serotonin derivatives, corresponding enzymes, heterologous production in plants or microbes, and their applications.  相似文献   
3.
Tholl D  Sohrabi R  Huh JH  Lee S 《Phytochemistry》2011,72(13):1635-1646
Volatile organic compounds emitted by plants mediate a variety of interactions between plants and other organisms. The irregular acyclic homoterpenes, 4,8-dimethylnona-1,3,7-triene (DMNT) and 4,8,12-trimethyltrideca-1,3,7,11-tetraene (TMTT), are among the most widespread volatiles produced by angiosperms with emissions from flowers and from vegetative tissues upon herbivore feeding. Special attention has been placed on the role of homoterpenes in attracting parasitoids and predators of herbivores and has sparked interest in engineering homoterpene formation to improve biological pest control. The biosynthesis of DMNT and TMTT proceeds in two enzymatic steps: the formation of the tertiary C15-, and C20-alcohols, (E)-nerolidol and (E,E)-geranyl linalool, respectively, catalyzed by terpene synthases, and the subsequent oxidative degradation of both alcohols by a single cytochrome P450 monooxygenase (P450). In Arabidopsis thaliana, the herbivore-induced biosynthesis of TMTT is catalyzed by the concerted activities of the (E,E)-geranyllinalool synthase, AtGES, and CYP82G1, a P450 of the so far uncharacterized plant CYP82 family. TMTT formation is in part controlled at the level of AtGES expression. Co-expression of AtGES with CYP82G1 at wound sites allows for an efficient conversion of the alcohol intermediate. The identified homoterpene biosynthesis genes in Arabidopsis and related genes from other plant species provide tools to engineer homoterpene formation and to address questions of the regulation and specific activities of homoterpenes in plant-herbivore interactions.  相似文献   
4.
5.
Flowers have a high risk of pathogen attack because of their rich nutrient and moisture content, and high frequency of insect visitors. We investigated the role of (E)-β-caryophyllene in floral defense against a microbial pathogen. This sesquiterpene is a common volatile compound emitted from flowers, and is a major volatile released from the stigma of Arabidopsis thaliana flowers. Arabidopsis thaliana lines lacking a functional (E)-β-caryophyllene synthase or constitutively overexpressing this gene were challenged with Pseudomonas syringae pv. tomato DC3000, which is a bacterial pathogen of brassicaceous plants. Flowers of plant lines lacking (E)-β-caryophyllene emission showed greater bacterial growth on their stigmas than did wild-type flowers, and their seeds were lighter and misshapen. By contrast, plant lines with ectopic (E)-β-caryophyllene emission from vegetative parts were more resistant than wild-type plants to pathogen infection of leaves, and showed reduced cell damage and higher seed production. Based on in vitro experiments, (E)-β-caryophyllene seems to act by direct inhibition of bacterial growth, rather than by triggering defense signaling pathways. (E)-β-Caryophyllene thus appears to serve as a defense against pathogens that invade floral tissues and, like other floral volatiles, may play multiple roles in defense and pollinator attraction.  相似文献   
6.
Plant-specific bioactive compounds including feruloyltyramine (FT), 4-coumaroyltyramine (CT), and caffeoyltyramine (CaT) were simultaneously produced in Escherichia coli by heterologous expression of two biosynthetic genes encoding 4-coumarate:coenzyme A ligase and tyramine N-hydroxycinnamoyltransferase (THT) cloned from Arabidopsis thaliana and pepper, respectively. Simultaneous supplementation of substrates to the recombinant E. coli resulted in the secretion of multiple tyramine derivatives into the medium at high yield: CT (189 mg l−1), FT (135 mg l−1), CaT (40 mg l−1). In addition, the recombinant E. coli also produced, albeit at low concentration, a range of dopamine derivatives such as feruloyldopamine due to THT’s ability to accept dopamine as a substrate.  相似文献   
7.
Protoporphyrin IX is a photosensitizer and a causative agent of rice membrane lipid peroxidation in plant cells. Protoporphyrinogen IX oxidase (PPO) is the molecular target of PPO-inhibiting herbicides, which trigger a massive increase in protoporphyrin IX. Thus, any possible method to decrease the levels of protoporphyrin IX upon challenge with PPO-inhibiting herbicides could be employed to generate plants resistant to such herbicides. We generated transgenic rice plants overexpressing rice ferrochelatase isogenes encoding ferrochelatase enzymes, which convert protoporphyrin IX into protoheme, to see whether the transgenic plants have phenotypes resistant to PPO-inhibiting herbicides. The resulting transgenic rice plants were all susceptible to oxyfluorfen (a diphenyl-ether-type PPO-inhibiting herbicide), as judged by cellular damage with respect to cellular leakage, chlorophyll loss, and lipid peroxidation. In particular, the transgenic plants expressing rice ferrochelatase II without its plastid targeting sequence showed higher transgene expression and oxyfluorfen susceptibility than lines expressing the intact ferrochelatase II. Possible susceptibility mechanisms to oxyfluorfen herbicide in the transgenic rice plants are discussed.  相似文献   
8.
9.
This study screened paraquat-tolerant plants among 10 plant species, including monocots and dicots angiosperms. Squash (Cucurbita moschata Duchesne ex Poiret) and kidney bean (Phaseolus vulgaris L.) plants exhibited the highest photooxidation-tolerant phenotypes upon a foliar treatment with paraquat. A foliar treatment with paraquat pre-mixed with leaf water extracts from the squash plant significantly alleviated paraquat-induced oxidative damage in maize, but this was not the case after a treatment with the hydrophobic phase of the leaf extracts. In particular, the water extract from young leaves (4th true leaf) of squash plants conferred tenfold higher tolerance to oxidative damage in paraquat-treated leave tissues compared to paraquat-only treatment. This tolerance was tightly linked not only to the increased amounts of ascorbic acid and dehydroascorbate antioxidants in the damaged leaves, but also to the reduced chlorophyll loss, lipid peroxidation, and cellular electrolyte leakage. Moreover, the protective effects of the water extract were apparent when using another bipyridyl herbicide, diquat, but not with a diphenyl-ether herbicide, oxyfluorfen. On the other hand, pre-treatment with the extract prior to the onset of drought or cold stress had no significant antioxidative effect on the treated tissues.  相似文献   
10.
We examined to determine whether senescence-induced tryptophan levels are positively associated with levels of glutamine synthetase (GS1), the initial enzyme in tryptophan biosynthesis. We generated transgenic rice plants in which GS1 was suppressed by RNA interference technology. The transgenic line showed a dramatic decrease in GS1 protein and glutamine content, but the levels of tryptophan and mRNA of the key tryptophan biosynthetic genes upon senescence were comparable to those of the wild type.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号