首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   47篇
  免费   4篇
  2021年   2篇
  2017年   1篇
  2015年   3篇
  2014年   1篇
  2013年   8篇
  2012年   3篇
  2011年   2篇
  2010年   4篇
  2009年   2篇
  2008年   3篇
  2007年   3篇
  2006年   4篇
  2005年   4篇
  2004年   1篇
  2003年   4篇
  2002年   1篇
  1999年   2篇
  1998年   2篇
  1992年   1篇
排序方式: 共有51条查询结果,搜索用时 380 毫秒
1.
Melioidosis is a severe infectious disease that is endemic in Southeast Asia and Northern Australia. Burkholderia pseudomallei, the causative agent of this disease, has developed resistance to an increasing list of antibiotics, demanding a search for novel agents. Lactoferricin and lactoferrampin are two antimicrobial domains of lactoferrin with a broad spectrum of antimicrobial activity. A hybrid peptide (LFchimera) containing lactoferrampin (LFampin265–284) and a part of lactoferricin (LFcin17–30) has strikingly higher antimicrobial activities compared to the individual peptides. In this study, the antimicrobial activities of this chimeric construct (LFchimera1), as well as of another one containing LFcin17–30 and LFampin268–284, a shorter fragment of LFampin265–284 (LFchimera2), and the constituent peptides were tested against 7 isolates of B. pseudomallei and compared to the preferential antibiotic ceftazidime (CAZ). All isolates including B. pseudomallei 979b shown to be resistant to CAZ, at a density of 105 CFU/ml, could be killed by 5–10 μM of LFchimera1 within 2 h, while the other peptides as well as the antibiotic CAZ only inhibited the B. pseudomallei strains resulting in an overgrowth in 24 h. These data indicate that LFchimera1 could be considered for development of therapeutic agents against B. pseudomallei.  相似文献   
2.
Plasmodium falciparum dihydrofolate reductase-thymidylate synthase (PfDHFR-TS) is an important target of antimalarial drugs. The efficacy of this class of DHFR-inhibitor drugs is now compromised because of mutations that prevent drug binding yet retain enzyme activity. The crystal structures of PfDHFR-TS from the wild type (TM4/8.2) and the quadruple drug-resistant mutant (V1/S) strains, in complex with a potent inhibitor WR99210, as well as the resistant double mutant (K1 CB1) with the antimalarial pyrimethamine, reveal features for overcoming resistance. In contrast to pyrimethamine, the flexible side chain of WR99210 can adopt a conformation that fits well in the active site, thereby contributing to binding. The single-chain bifunctional PfDHFR-TS has a helical insert between the DHFR and TS domains that is involved in dimerization and domain organization. Moreover, positively charged grooves on the surface of the dimer suggest a function in channeling of substrate from TS to DHFR active sites. These features provide possible approaches for the design of new drugs to overcome antifolate resistance.  相似文献   
3.
Dihydrofolate reductases (DHFRs) from Plasmodium falciparum (Pf) and various species of both prokaryotic and eukaryotic organisms have a conserved tryptophan (Trp) at position 48 in the active site. The role in catalysis and binding of inhibitors of the conserved Trp48 of PfDHFR has been analysed by site-specific mutagenesis, enzyme kinetics and use of a bacterial surrogate system. All 19 mutant enzymes showed undetectable or very low specific activities, with the highest value of k(cat)/K(m) from the Tyr48 (W48Y) mutant (0.12 versus 11.94M(-1)s(-1)), of about 1% of the wild-type enzyme. The inhibition constants for pyrimethamine, cycloguanil and WR99210 of the W48Y mutants are 2.5-5.3 times those of the wild-type enzyme. All mutants, except W48Y, failed to support the growth of Escherichia coli transformed with the parasite gene in the presence of trimethoprim, indicating the loss of functional activity of the parasite enzyme. Hence, Trp48 plays a crucial role in catalysis and inhibitor binding of PfDHFR. Interestingly, W48Y with an additional mutation at Asn188Tyr (N188Y) was found to promote bacterial growth and yielded a higher amount of purified enzyme. However, the kinetic parameters of the purified W48Y+N188Y enzyme were comparable with W48Y and the binding affinities for DHFR inhibitors were also similar to the wild-type enzyme. Due to its conserved nature, Trp48 of PfDHFR is a potential site for interaction with antimalarial inhibitors which would not be compromised by its mutations.  相似文献   
4.
Three naturally new C-glycosylated benz[α]anthraquinone derivatives, urdamycinone E (1), urdamycinone G (2), dehydroxyaquayamycin (3) have been isolated from the marine Streptomycetes sp. BCC45596. Urdamycin E (4), the possible biosynthetic precursor of 13, has also been identified after a re-cultivation of the strain. These compounds (14) exhibited potent anti-Plasmodium palcifarum K1 strain with IC50 values in a range of 0.0534–2.93 μg/mL and anti-Mycobacterium tuberculosis with minimum inhibition concentrations (MICs) in a range of 3.13–12.50 μg/mL. Cytotoxicity against KB, MCF-7, NCI-H187, and Vero cells was also evaluated.  相似文献   
5.
Conventional reverse genetic approaches for study of Plasmodium malaria parasite gene function are limited, or not applicable. Hence, new inducible systems are needed. Here we describe a method to control P. falciparum gene expression in which target genes bearing a glmS ribozyme in the 3′ untranslated region are efficiently knocked down in transgenic P. falciparum parasites in response to glucosamine inducer. Using reporter genes, we show that the glmS ribozyme cleaves reporter mRNA in vivo leading to reduction in mRNA expression following glucosamine treatment. Glucosamine-induced ribozyme activation led to efficient reduction of reporter protein, which could be rapidly reversed by removing the inducer. The glmS ribozyme was validated as a reverse-genetic tool by integration into the essential gene and antifolate drug target dihydrofolate reductase-thymidylate synthase (PfDHFR-TS). Glucosamine treatment of transgenic parasites led to rapid and efficient knockdown of PfDHFR-TS mRNA and protein. PfDHFR-TS knockdown led to a growth/arrest mutant phenotype and hypersensitivity to pyrimethamine. The glmS ribozyme may thus be a tool for study of essential genes in P. falciparum and other parasite species amenable to transfection.  相似文献   
6.
7.
Due to chronic morbidity, the risk of increasing drug resistance and the existence of the hypnozoite stage in Plasmodium vivax malaria, there is a need to find out how hosts develop immunity to compromise the malaria parasites. Here we focused on an in vitro model for immunotherapy and vaccine development. Immunosuppressive mechanisms in malaria include inhibition of T cell response and suppression of dendritic cell function. Using in vitro activation of lymphocytes by malaria antigen-pulsed dendritic cells could overcome the limitation of antigen presentation during acute infections. Here we showed that the sporozoite-pulsed dendritic cell could elicit cytotoxicity against liver stage of P. vivax. Analysis using immunophenotypic markers showed maturation of the dendritic cells and stimulation of cytotoxic T cells. Functional assay of the in vitro-activated cytotoxic T cells showed enhancement of specific killing of the P. vivax exoerythrocytic stages within infected hepatocytes. This model may be useful for vaccine development against human malaria.  相似文献   
8.

Background  

Most group A streptococcal (GAS) vaccine strategies have focused on the surface M protein, a major virulence factor of GAS. The amino-terminus of the M protein elicits antibodies, that are both opsonic and protective, but which are type specific. J14, a chimeric peptide that contains 14 amino acids from the M protein conserved C-region at the carboxy-terminus, offers the possibility of a vaccine which will elicit protective opsonic antibodies against multiple different GAS strains. In this study, we searched for J14 and J14-like sequences and the number of their repeats in the C-region of the M protein from GAS strains isolated from the Northern Thai population. Then, we examined the bactericidal activity of J14, J14.1, J14-R1 and J14-R2 antisera against multiple Thai GAS strains.  相似文献   
9.
Previously established PCR amplification and Southern hybridization procedures were developed for the isolation of the 0.8-kb flagellin gene in Pseudomonas putida. The deduced protein sequence has significant homology to the N- and C-terminal sequences of other bacterial flagellins. We propose that P. putida flagellin genes can be divided at least into three size groups: type I (2.0 kb), type II (1.4 kb), and type III (0.8 kb). Type I and type II flagellin genes have been reported. The new 0.8-kb type III gene was expressed in E. coli, and the resulting protein was purified and used to raise polyclonal antibody to study whether this small gene encodes flagellin. The antiserum reacted with purified flagellin monomers from representatives of each flagellin type, as well as proteins of the same sizes in lysates of these organisms, on Western immunoblots. This antiserum was determined to be functional in a motility inhibition assay. Similar results were obtained from antiserum directed against purified type III flagellin, indicating that a new type of flagellin gene in P. putida has been found. Preliminary electron microscopic study revealed that P. putida isolate with the smaller flagellin gene type appeared to have a thinner flagellar filament.  相似文献   
10.

Background

Hep27 monoclonal (Hep27 Mab) is an antibody against hepatocellular carcinoma. Hep27 Mab itself can inhibit the growth of a hepatocellular carcinoma cell line (HCC-S102). We attempted to produce a single-chain fragment (scFv), a small fragment containing an antigen-binding site of Hep27 Mab, by using DNA-recombinant techniques.

Results

The sequences encoding the variable regions of heavy (VH) and light (VL) chains of a murine Hep27 Mab were linked together by a linker peptide (Gly4Ser)3 and tagged with a hexa-histidine at the C-terminal; the resultant DNA construct was expressed in E. coli as an insoluble protein. The denatured scFv was refolded and purified by immobilized metal ion affinity chromatography (12 mg/l with a molecular weight of 27 kDa). Hep27scFv exhibited a tumoricidal activity against the HCC-S102 cell as its parental antibody (Hep27 Mab).

Conclusion

This scFv may be a potential candidate for a targeting agent in HCC immunodiagnosis or immunotherapy.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号