首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   356篇
  免费   24篇
  2023年   3篇
  2022年   3篇
  2021年   21篇
  2020年   6篇
  2019年   8篇
  2018年   7篇
  2017年   10篇
  2016年   19篇
  2015年   24篇
  2014年   18篇
  2013年   35篇
  2012年   29篇
  2011年   33篇
  2010年   15篇
  2009年   12篇
  2008年   12篇
  2007年   20篇
  2006年   19篇
  2005年   13篇
  2004年   3篇
  2003年   9篇
  2002年   16篇
  2001年   8篇
  2000年   4篇
  1999年   8篇
  1998年   1篇
  1995年   2篇
  1994年   2篇
  1993年   2篇
  1991年   2篇
  1989年   1篇
  1987年   1篇
  1984年   3篇
  1983年   2篇
  1982年   1篇
  1981年   1篇
  1980年   1篇
  1973年   1篇
  1971年   2篇
  1970年   1篇
  1967年   1篇
  1964年   1篇
排序方式: 共有380条查询结果,搜索用时 15 毫秒
1.
DNA was assayed in a homogeneous format using DNA probes containing hybridization-sensitive labels. The DNA probes were prepared from complementary DNA strands in which one strand was covalently labeled on the 5'-terminus with fluorescein and the complementary strand was covalently labeled on the 3'-terminus with a quencher of fluorescein emission, either pyrenebutyrate or sulforhodamine 101. Probes prepared in this manner were able to detect unlabeled target DNA by competitive hybridization producing fluorescence signals which increased with increasing target DNA concentration. A single pair of complementary probes detected target DNA at a concentration of approximately 0.1 nM in 10 min or about 10 pM in 20-30 min. Detection of a 4 pM concentration of target DNA was demonstrated in 6 h using multiple probe pairs. The major limiting factors were background fluorescence and hybridization rates. Continuous monitoring of fluorescence during competitive hybridization allowed correction for variable sample backgrounds at probe concentrations down to 20 pM; however, the time required for complete hybridization increased to greater than 1 h at probe concentrations below 0.1 nM. A promising application for this technology is the rapid detection of amplified polynucleotides. Detection of 96,000 target DNA molecules in a 50-microliters sample was demonstrated following in vitro amplification using the polymerase chain reaction technique.  相似文献   
2.
A comparative study was made of the fatty acid composition of the total lipids extracted from the cotyledons and the callus cultures derived from cotyledon segments of six species of Cucurbitaceae. Conditions for callus induction and growth of cultures were identical. The difference between the two systems was in the reversal of the ratio of total unsaturated to saturated acids in all callus cultures. In callus cultures, instead of linoleic, linolenic was the major unsaturated fatty acid. In Momordica charantia, α-elaeostearic acid present in the cotyledon was not detected in callus and oleic acid was the major unsaturated fatty acid.  相似文献   
3.
The synthesis is described of a luminescent furophenanthraquinone derivative, 9‐methoxyphenanthro[4,3‐b]furan‐4,5‐dione (MPFD). The biological importance of tetracyclic furophenanthraquinones was considered and the tunable luminescence of MPFD in different solvents was studied to explore the nature of the specific interactions between MPFD and solvents. Observation of dual emission bands and identical nature of the fluorescence excitation spectra of MPFD monitored at the emission wavelength in polar solvents indicated the formation of two different types of species in the excited state, probably due to proton transfer from the solvent to MPFD. Luminescence intensity due to anionic species was found to be increased and the corresponding peak was red shifted with increase in the proton‐donating ability of the solvents, acting as an acid with respect to MPFD. Availability of more acidic protons in the solvent facilitated this phenomenon occurring in the excited state. MPFD also interacted with halogen‐containing solvents by forming electron donor–acceptor charge transfer (CT) complexes. This CT complex formation was dependent on the number of chlorine atoms; the position of the corresponding luminescence band varied with the polarity of the solvent. Extent of the CT increased with increase in the number of chlorine atoms in the dichloro, trichloro and tetrachloro solvents, whereas the luminescence peak due to the CT complex was found to be blue shifted with decrease in solvent polarity. Interaction of the synthesized bioactive MPFD with different solvents deserves biological importance as proton transfer and CT play pivotal roles in biology.  相似文献   
4.
Plant and Soil - Perennial forage grass production has the potential to improve smallholder livelihoods in the tropics. However, nutrient management is often challenging, especially on infertile...  相似文献   
5.
Biomechanics and Modeling in Mechanobiology - Fluoroscopy is a radiographic procedure for evaluating esophageal disorders such as achalasia, dysphasia and gastroesophageal reflux disease. It...  相似文献   
6.
7.
8.
Inhibitors of poly (ADP-ribose) polymerase-1 (PARP-1) enzyme are useful for the treatment of various diseases including cancer. Comparative in silico studies were performed on different ligand-based (2D-QSAR, Kernel-based partial least square (KPLS) analysis, Pharmacophore Search Engine (PHASE) pharmacophore mapping), and structure-based (molecular docking, MM-GBSA analyses, Gaussian-based 3D-QSAR analyses on docked poses) modeling techniques to explore the structure–activity relationship of a diverse set of PARP-1 inhibitors. Two-dimensional (2D)-QSAR highlighted the importance of charge topological index (JGI7), fractional polar surface area (JursFPSA3), and connectivity index (CIC2) along with different molecular fragments. Favorable and unfavorable fingerprints were demonstrated in KPLS analysis, whereas important pharmacophore features (one acceptor, one donor, and two ring aromatic) along with favorable and unfavorable field effects were demonstrated in PHASE-based pharmacophore model. MM-GBSA analyses revealed significance of different polar, non-polar, and solvation energies. Docking-based alignment of ligands was used to perform Gaussian-based 3D-QSAR study that further demonstrated importance of different field effects. Overall, it was found that polar interactions (hydrogen bonding, bridged hydrogen bonding, and pi–cation) play major roles for higher activity. Steric groups increase the total contact surface area but it should have higher fractional polar surface area to adjust solvation energy. Structure-based pharmacophore mapping spotted the positive ionizable feature of ligands as the most important feature for discriminating highly active compounds from inactives. Molecular dynamics simulation, conducted on highly active ligands, described the dynamic behaviors of the protein complexes and supported the interpretations obtained from other modeling analyses. The current study may be useful for designing PARP-1 inhibitors.  相似文献   
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号