首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   96篇
  免费   3篇
  2018年   3篇
  2017年   1篇
  2015年   3篇
  2014年   3篇
  2013年   3篇
  2012年   4篇
  2011年   4篇
  2010年   4篇
  2009年   1篇
  2008年   6篇
  2007年   2篇
  2006年   8篇
  2005年   4篇
  2004年   3篇
  2003年   4篇
  2002年   4篇
  2001年   3篇
  2000年   7篇
  1999年   1篇
  1998年   1篇
  1997年   2篇
  1996年   1篇
  1995年   1篇
  1994年   2篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1989年   2篇
  1988年   2篇
  1987年   1篇
  1986年   1篇
  1985年   1篇
  1984年   2篇
  1983年   1篇
  1982年   1篇
  1981年   3篇
  1980年   4篇
  1979年   1篇
  1977年   1篇
  1976年   1篇
排序方式: 共有99条查询结果,搜索用时 35 毫秒
1.
This study shows that the membrane-permeable stereospecific 1-oleoyl-2-acetyl-sn-glycerol (OAG), which is the analog of the natural 1,2-diacylglycerol (DAG), can stimulate the growth of ascites tumor cells. OAG can fully replace high serum concentrations in the culture medium and stimulates DNA synthesis in a dose-dependent manner. Investigation of the protein kinase C (PKC) isolated from a Triton extract of a 100,000g membrane pellet revealed that OAG can directly activate this enzyme. Concomitantly the phosphorylation of several cytosolic proteins with the molecular weights of 26, 33, 49, 55, 64, and 90 kDa is observed which is also found in serum-stimulated cells. Since DAG as a second messenger molecule originates from the hydrolysis of phosphoinositides we have investigated the metabolism of these lipids after labeling the cells with [3H]inositol. In detail, we have measured the amount of radioactive inositol trisphosphate (IP3) and the phosphodiesterase hydrolyzing phosphatidylinositol-4,5-bisphosphate (PIP2). The decreased radioactivity level of IP3 in OAG-stimulated cells as compared to non-growing cells (1-2% serum) indicates a feedback regulation of PIP2 hydrolysis which is substantiated by a profound reduction of PIP2-specific phospholipase C activity. The reduced IP3 formation has apparently no inhibitory effect on the cytoplasmic free Ca2+ concentration of OAG-stimulated cells, suggesting that the Ca2+ release is not directly correlated to the amount of IP3, which is also demonstrated for the non-growing cells. These data indicate that OAG apparently has a duel effect on the inositol phospholipid-mediated signal transfer system.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   
2.
Arachidonate incorporation into synaptosomal phospholipids was shown to be affected by factors including the procedure for preparation of the membrane fractions and preincubation of synaptosomes prior to assay of incorporation of arachidonate into both phosphatidylcholine (PC) and phosphatidylinositol (PI). However, the inhibition toward incorporation into PIs, but not PCs, was fully reversed when the membranes were washed with bovine serum albumin. A twofold increase in arachidonate incorporation into PIs was also observed when freshly prepared synaptosomes were washed with serum albumin immediately before assay of incorporation activity. The inhibitory action is thought to be due to an increase in polyunsaturated fatty acids and/or their oxidation products which may then elicit a special effect on the acyltransferase responsible for transferring arachidonate into phosphatidylinositols. The differences in fatty acid uptake and response to serum albumin also suggest the presence of different acyltransferase for acyl transfer to PIs and PCs.  相似文献   
3.
The effects of 1 min of acute hypoxic treatment (1% O2 in N2) on incorporation of [1-14C]arachidonic acid into brain lipids of 16-day-old rats were investigated at 3, 6, and 12 min after intracerebral injection of the labeled fatty acid. The hypoxic-hypoxia condition associated with convulsive seizures caused a decrease in the conversion of labeled arachidonate to its acyl-CoA as well as incorporation of the label into the brain phospholipids. Among the phospholipids, there was a specific decrease in the labeling of diacylglycerophosphoinositol (GPI), and this change was accompanied by an increase in labeling of the diacylglycerols. These results indicate that metabolism of the long-chain fatty acids and some glycero-lipids in brain are vulnerable to acute hypoxic treatment.  相似文献   
4.
The hydrolysis of acyl-CoA by acyl-CoA hydrolase (EC 3.1.2.2.) in brain synaptosomes was inhibited by calcium. This inhibition was partly due to interaction of Ca2+ with the acyl-CoA, which was present in the soluble form, and partly due to complex formation among acyl-CoA, Ca2+ and membrane phospholipids. The inhibition of acyl-CoA hydrolase activity, as well as the complex formation. could be reversed if incubation was carried out in the presence of Ca2+ chelating agents. Synaptosomes isolated from brain samples after 1 min of postdecapitative treatment showed a decrease in oleoyl-CoA hydrolase activity. The physiological implication of acyl-CoA metabolism in relation to synaptic function is discussed.Abbreviations FFA Free fatty acids - GPC glycerophosphocholines - GPE glycerophosphoethanolamines - GPI glycerophosphoinositols - GPS glycerophosphoserines  相似文献   
5.
Synaptoneurosomes obtained from the cortex of rat brain prelabeled with [14C]arachidonic acid [( 14C]AA) were used as a source of substrate and enzyme in studies on the regulation of AA release. A significant amount of AA is liberated in the presence of 2 mM EGTA, independently of Ca2+, primarily from phosphatidic acid and polyphosphoinositides (poly-PI). Quinacrine, an inhibitor of phospholipase A2 (PLA2), suppressed AA release by about 60% and neomycin, a putative inhibitor of phospholipase C (PLC), reduced AA release by about 30%. An additive effect was exhibited when both inhibitors were given together. Ca2+ activated AA release. The level of Ca2+ present in the synaptoneurosomal preparation (endogenous level) and 5 microM CaCl2 enhance AA liberation by approximately 25%, whereas 2 mM CaCl2 resulted in a 50% increase in AA release relative to EGTA. The source for Ca(2+)-dependent AA release is predominantly phosphatidylinositol (PI); however, a small pool may also be liberated from neutral lipids. Carbachol, an agonist of the cholinergic receptor, stimulated Ca(2+)-dependent AA release by about 17%. Bradykinin enhanced the effect of carbachol by about 10-15%. This agonist-mediated AA release occurs specifically from phosphoinositides (PI + poly-PI). Quinacrine almost completely suppresses calcium-and carbachol-mediated AA release. Neomycin inhibits this process by about 30% and totally suppresses the effect of bradykinin. Our results indicate that both phospholipases PLA2 and PLC with subsequent action of DAG lipase are responsible for Ca(2+)-independent AA release. Ca(2+)-dependent and carbachol-mediated AA liberation occurs mainly as the result of PLA2 action. A small pool of AA is probably also released by PLC, which seems to be exclusively responsible for the effect of bradykinin.  相似文献   
6.
1. A rapid uptake and esterification of [14C]arachidonic acid during the first 4 hr of cultivation of ascites cells in serum-deprived medium was observed followed by a fast turnover of the fatty acid. 2. Labeling and turnover of esterified arachidonate in individual phospholipid classes was in the order: phosphatidylcholine (PC) greater than phosphatidylinositol (PI) much greater than phosphatidylinositol-4-phosphate (PIP) and -4,5-bisphosphate (PIP2) greater than phosphatidylethanolamine (PE) greater than PE-plasmalogens. 3. In cells stimulated with 1-oleoyl-2-acetyl-sn-glycerol a transient course of arachidonic acid incorporation into PC, PI, PIP and PIP2 was determined peaking 30 min after stimulation, indicating both esterification and release under these conditions. 4. The release of arachidonate was blocked by quinacrine which is a specific inhibitor of phospholipase A2.  相似文献   
7.
The relationship between intracellular lysosomal rupture and cell death caused by silica was studied in P388d(1) macrophages. After 3 h of exposure to 150 μg silica in medium containing 1.8 mM Ca(2+), 60 percent of the cells were unable to exclude trypan blue. In the absence of extracellular Ca(2+), however, all of the cells remained viable. Phagocytosis of silica particles occurred to the same extent in the presence or absence of Ca(2+). The percentage of P388D(1) cells killed by silica depended on the dose and the concentration of Ca(2+) in the medium. Intracellular lyosomal rupture after exposure to silica was measured by acridine orange fluorescence or histochemical assay of horseradish peroxidase. With either assay, 60 percent of the cells exposed to 150 μg silica for 3 h in the presence of Ca(2+) showed intracellular lysosomal rupture, was not associated with measureable degradation of total DNA, RNA, protein, or phospholipids or accelerated turnover of exogenous horseradish peroxidase. Pretreatment with promethazine (20 μg/ml) protected 80 percent of P388D(1) macrophages against silica toxicity although lysosomal rupture occurred in 60-70 percent of the cells. Intracellular lysosomal rupture was prevented in 80 percent of the cells by pretreatment with indomethacin (5 x 10(-5)M), yet 40-50 percent of the cells died after 3 h of exposure to 150 μg silica in 1.8 mM extracellular Ca(2+). The calcium ionophore A23187 also caused intracellular lysosomal rupture in 90-98 percent of the cells treated for 1 h in either the presence or absence of extracellular Ca(2+). With the addition of 1.8 mM Ca(2+), 80 percent of the cells was killed after 3 h, whereas all of the cells remained viable in the absence of Ca(2+). These experiments suggest that intracellular lysosomal rupture is not causally related to the cell death cause by silica or A23187. Cell death is dependent on extracellular Ca(2+) and may be mediated by an influx of these ions across the plasma membrane permeability barrier damaged directly by exposure to these toxins.  相似文献   
8.
The human genome is exposed to oxidative/genotoxic stress by several endogenous and exogenous compounds. These events evoke DNA damage and activate poly(ADP-ribose) polymerase-1 (PARP-1), the key enzyme involved in DNA repair. The massive stress and over-activation of this DNA-bound enzyme can be responsible for an energy crisis and neuronal death. The last data indicated that product of PARP-1, i.e. poly(ADP-ribose) (PAR), acts as a signalling molecule and plays a significant role in nucleus-mitochondria cross-talk. PAR translocated to the mitochondria can be involved in mitochondrial permeability, the release of an apoptosis-inducing factor (AIF). Its translocation into the nucleus leads to chromatin condensation, fragmentation and cell death. The exact mechanism of this novel death pathway has not yet fully been understood.  相似文献   
9.
The reperfusion of previously ischemic brain is associated with exacerbation of cellular injury. Reperfusion occasionally potentates release of intracellular enzymes, influx of Ca2+, breakdown of membrane phospholipids, accumulation of amyloid precursor protein or amyloid -(like) proteins, and apolipoprotein E. In this study, the effect of reperfusion injury on the activity of cerebral cortex enzymes acting on phosphatidyl [3H] inositol (PI) and [l4C-arachidonoyl] PI was investigated. Moreover the effect of amyloid 25–35 on PI degradation by phospholipase(s) of normoxic brain and subjected to ichemia-reperfussion injury was determined. Brain ischemia in gerbils (Meriones unguiculatus) was induced by ligation of both common carotid arteries for 5 min and then brains were perfused for 15 min, 2 h and 7 days. Statistically significant activation of enzyme(s) involved in phosphatidylinositol degradation in gerbils subjected to ischemia-reperfusion injury was observed. Nearly all gerbils showed a higher activity of cytosolic PI phos-pholipase C (PLC) at 15 min after ischemia. Concomitantly, the significant enhancement of the level of DAG and AA radioactivity at this short reperfusion time confirmed the active PI degradation by phospholipase(s) in cerebral cortex and hippocampus. After a prolonged reperfusion time of 7 days after ischemia, both cytosolic and membrane-bound forms of PI-PLC were activated. The question arises if alteration of membranes by the degradation of phospholipids occurring after an ischemic episode potentates the effect of A on membrane-bound enzymes. A neuro-toxic fragment of amyloid, A 25–35, incubated in the presence of endogenous Ca2+, increased significantly the PI-PLC activity of normoxic brain. In its non-aggregated form, A 25–35 activates PI-PLC but in the aggregated form the enzymatic activity decreased. Thus, A 25–35 exerts a similar effect on the membrane-bound PI-PLC from normoxic brain or subjected to ischemia reperfussion injury. We conclude that the degradation of phosphatidylinositol by cytosolic phosphoinositide-phospholipase C may contribute to the pathophysiology of delayed neuronal death following cerebral ischemia. Thus, a specific inhibitor of this enzyme(s) may offer therapeutic strategies to protect the brain from damage triggered by ischemia. Ischemia-reperfusion injury had no effect on A-evoked alterations of synaptic plasma membrane-bound PI-PLC.  相似文献   
10.
Oocyte control of granulosa and theca cell function may be mediated by several growth factors via a local feedback loop(s) between these cell types. This study examined both the role of oocyte-secreted factors on granulosa and thecal cells, cultured independently and in co-culture, and the effect of stem cell factor (SCF); a granulosa cell derived peptide that appears to have multiple roles in follicle development. Granulosa and theca cells were isolated from 2–6 mm healthy follicles of mature porcine ovaries and cultured under serum-free conditions, supplemented with: 100 ng/ml LR3 IGF-1, 10 ng/ml insulin, 100 ng/ml testosterone, 0–10 ng/ml SCF, 1 ng/ml FSH (granulosa), 0.01 ng/ml LH (theca) or 1 ng/ml FSH and 0.01 ng/ml LH (co-culture) and with/without oocyte conditioned medium (OCM) or 5 oocytes. Cells were cultured in 96 well plates for 144 h, after which viable cell numbers were determined. Medium was replaced every 48 h and spent medium analysed for steroids.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号