首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   112篇
  免费   14篇
  国内免费   1篇
  2021年   2篇
  2018年   1篇
  2017年   1篇
  2016年   2篇
  2015年   1篇
  2014年   4篇
  2013年   9篇
  2012年   7篇
  2011年   8篇
  2010年   6篇
  2009年   5篇
  2008年   5篇
  2007年   3篇
  2006年   6篇
  2005年   10篇
  2004年   4篇
  2003年   1篇
  2002年   2篇
  2001年   4篇
  2000年   1篇
  1999年   11篇
  1998年   3篇
  1997年   3篇
  1996年   4篇
  1994年   1篇
  1993年   3篇
  1992年   4篇
  1986年   2篇
  1985年   1篇
  1984年   1篇
  1983年   2篇
  1981年   3篇
  1980年   1篇
  1979年   1篇
  1978年   3篇
  1977年   1篇
  1975年   1篇
排序方式: 共有127条查询结果,搜索用时 281 毫秒
1.
In this study, 18 partly commercially available samples of rock salt from Austria, Germany, Pakistan, Poland, Switzerland, and Ukraine were investigated with respect to their content of trace elements using instrumental neutron activation analysis. Elements detected were Al, Ba, Br, Ca, Ce, Cl, Co, Cr, Cs, Eu, Fe, Hf, La, Mn, Na, Rb, Sb, Sc, Sm, Sr, Ta, Tb, Th, and Zn, some of them only in individual cases. An estimation of the bioavailability of these trace elements was performed by dissolving an equivalent of the sodium chloride samples in diluted hydrochloric acid (simulating stomach acid), filtering off the insoluble components, and analyzing the evaporated filtrate. It could be shown that in most cases bioactive trace elements like Fe can be found in rock salt in the form of almost insoluble compounds and are therefore not significantly bioavailable, whereas thorium, for example, was partly bioavailable in two cases. A significant contribution to the recommended daily intake of metal trace elements by using rock salt for nutrition can be excluded.  相似文献   
2.
3.
Using the National Synchrotron Light Source (NSLS) at Brookhaven far-infrared absorption in the frequency range 15-45 cm-1 was detected in samples of lysozyme at different hydrations and in water. The absorption is due to the presence of low-frequency (picosecond timescale) motion in the samples, such as are calculated in molecular dynamics simulations. The form of the transmission profile is temperature independent but varies significantly with the degree of hydration of the protein. At higher hydrations the profile resembles closely that of pure water in the region 20-45 cm-1. At a low hydration marked differences are seen with, in particular, the appearance of a transmission minimum at 19 cm-1. The possible origins of the hydration dependence are discussed. The results demonstrate the usefulness of long-wavelength synchrotron radiation for the characterisation of biologically-important low-frequency motions in protein samples.  相似文献   
4.
The objective of this study was to determine whether cells in G(0) phase are functionally distinct from those in G(1) with regard to their ability to respond to the inducers of DNA synthesis and to retard the cell cycle traverse of the G(2) component after fusion. Synchronized populations of HeLa cells in G(1) and human diploid fibroblasts in G(1) and G(0) phases were separately fused using UV-inactivated Sendai virus with HeLa cells prelabeled with [(3)H]ThdR and synchronized in S or G(2) phases. The kinetics of initiation of DNA synthesis in the nuclei of G(0) and G(1) cells residing in G(0)/S and G(1)/S dikaryons, respectively, were studied as a function of time after fusion. In the G(0)/G(2) and G(1)/G(2) fusions, the rate of entry into mitosis of the heterophasic binucleate cells was monitored in the presence of Colcemid. The effects of protein synthesis inhibition in the G(1) cells, and the UV irradiation of G(0) cells before fusion, on the rate of entry of the G(2) component into mitosis were also studied. The results of this study indicate that DNA synthesis can be induced in G(0)nuclei after fusion between G(0)- and S-phase cells, but G(0) nuclei are much slower than G(1) nuclei in responding to the inducers of DNA synthesis because the chromatin of G(0) cells is more condensed than it is in G(1) cells. A more interesting observation resulting from this study is that G(0) cells is more condensed than it is in G(1) cells. A more interesting observation resulting from this study is that G(0) cells differ from G(1) cells with regard to their effects on the cell cycle progression of the G(2) nucleus into mitosis. This difference between G(0) and G(1) cells appears to depend on certain factors, probably nonhistone proteins, present in G(1) cells but absent in G(0) cells. These factors can be induced in G(0) cells by UV irradiation and inhibited in G(1) cells by cycloheximide treatment.  相似文献   
5.
β-Glucan process-related impurities can be introduced into biopharmaceutical products via upstream or downstream processing or via excipients. This study obtained a comprehensive process-mapping dataset for five monoclonal antibodies to assess β-glucan introduction and clearance during development and production runs at various scales. Overall, 198 data points were available for analysis. The greatest β-glucan concentrations were found in the depth-filtration filtrate (37–2,745 pg/ml). Load volume correlated with β-glucan concentration in the filtrate, whereas flush volume was of secondary importance. Cation-exchange chromatography significantly cleared β-glucans. Furthermore, β-glucan leaching from the Planova 20N virus removal filter was reduced by increasing the flush volume (1 vs. 10 L/m2). β-glucan concentrations after filter flush with 10 L/m2 were consistently <10 pg/ml. No or only limited β-glucan clearance was attained via ultrafiltration/diafiltration (UF/DF). However, during the first run with monoclonal antibody (mAb) 4, β-glucan concentration in the UF/DF retentate was 10.8 pg/mg, potentially due to β-glucan leaching from the first run with a regenerated cellulose membrane. Overall, β-glucan levels in the final mAb drug substance were 1–12 pg/mg. Assuming high doses of 1,000–5,000 mg, a β-glucan contamination at 20 pg/mg would translate to 20–100 ng/dose, which is below the previously suggested threshold for product safety (≤500 ng/dose).  相似文献   
6.

Introduction

Exercise training has emerged as a promising therapeutic strategy to counteract physical dysfunction in adult systemic lupus erythematosus. However, no longitudinal studies have evaluated the effects of an exercise training program in childhood-onset systemic lupus erythematosus (C-SLE) patients. The objective was to evaluate the safety and the efficacy of a supervised aerobic training program in improving the cardiorespiratory capacity in C-SLE patients.

Methods

Nineteen physically inactive C-SLE patients were randomly assigned into two groups: trained (TR, n = 10, supervised moderate-intensity aerobic exercise program) and non-trained (NT, n = 9). Gender-, body mass index (BMI)- and age-matched healthy children were recruited as controls (C, n = 10) for baseline (PRE) measurements only. C-SLE patients were assessed at PRE and after 12 weeks of training (POST). Main measurements included exercise tolerance and cardiorespiratory measurements in response to a maximal exercise (that is, peak VO2, chronotropic reserve (CR), and the heart rate recovery (ΔHRR) (that is, the difference between HR at peak exercise and at both the first (ΔHRR1) and second (ΔHRR2) minutes of recovery after exercise).

Results

The C-SLE NT patients did not present changes in any of the cardiorespiratory parameters at POST (P > 0.05). In contrast, the exercise training program was effective in promoting significant increases in time-to-exhaustion (P = 0.01; ES = 1.07), peak speed (P = 0.01; ES = 1.08), peak VO2 (P = 0.04; ES = 0.86), CR (P = 0.06; ES = 0.83), and in ΔHRR1 and ΔHRR2 (P = 0.003; ES = 1.29 and P = 0.0008; ES = 1.36, respectively) in the C-SLE TR when compared with the NT group. Moreover, cardiorespiratory parameters were comparable between C-SLE TR patients and C subjects after the exercise training intervention, as evidenced by the ANOVA analysis (P > 0.05, TR vs. C). SLEDAI-2K scores remained stable throughout the study.

Conclusion

A 3-month aerobic exercise training was safe and capable of ameliorating the cardiorespiratory capacity and the autonomic function in C-SLE patients.

Trial registration

NCT01515163.  相似文献   
7.
Plasma cells are found surrounding the inflammatory infiltrates of macrophages, T, and B cells in the synovial tissue of patients with rheumatoid and reactive arthritis. This characteristic arrangement suggests that in the synovial tissue CD20+ B cells differentiate into plasma cells. To examine clonal relationships, we have used micromanipulation to separately isolate CD20+ B cells and plasma cells from single infiltrates. DNA was extracted, and from both populations the VH/VL gene repertoires was determined. The data show that in the inflamed synovial tissue activated B cells are clonally expanded. During proliferation in the network of follicular dendritic cells, V gene variants are generated by the hypermutation mechanism. Surprisingly, we do not find identical rearrangements between CD20+ B cells and plasma cells. Nevertheless, the finding of clonally related plasma cells within single infiltrates suggests that these cells underwent terminal differentiation in the synovial tissue. These results indicate that B cell differentiation in the synovial tissue is a dynamic process. Whereas CD20+ B cells may turnover rapidly, plasma cells may well be long lived and thus accumulate in the synovial tissue. The analysis of individual B cells recovered from synovial tissue opens a new way to determine the specificity of those cells that take part in the local immune reaction. This will provide new insights into the pathogenesis of chronic inflammatory diseases like rheumatoid or reactive arthritis.  相似文献   
8.
The ability of two strains of Lactobacillus acidophilus, CRL 640 and CRL 800, to survive and retain their biological activities under frozen storage was determined. Freezing and thawing, as well as frozen storage, damaged the cell membrane, rendering the microorganisms sensitive to sodium chloride and bile salts. Both lactic acid production and proteolytic activity were depressed after 21 days at -20 degreesC, whereas beta-galactosidase activity per cell unit was increased. Cell injury was partially overcome after repair in a salt-rich medium. Copyright 1998 Academic Press.  相似文献   
9.
Mitochondria play an essential role in nitric oxide (NO) signal transduction in plants. Using the biotin-switch method in conjunction with nano-liquid chromatography and mass spectrometry, we identified 11 candidate proteins that were S-nitrosylated and/or glutathionylated in mitochondria of Arabidopsis (Arabidopsis thaliana) leaves. These included glycine decarboxylase complex (GDC), a key enzyme of the photorespiratory C2 cycle in C3 plants. GDC activity was inhibited by S-nitrosoglutathione due to S-nitrosylation/S-glutathionylation of several cysteine residues. Gas-exchange measurements demonstrated that the bacterial elicitor harpin, a strong inducer of reactive oxygen species and NO, inhibits GDC activity. Furthermore, an inhibitor of GDC, aminoacetonitrile, was able to mimic mitochondrial depolarization, hydrogen peroxide production, and cell death in response to stress or harpin treatment of cultured Arabidopsis cells. These findings indicate that the mitochondrial photorespiratory system is involved in the regulation of NO signal transduction in Arabidopsis.Nitric oxide (NO) has emerged as a new chemical messenger in plant biology. It can interact with a variety of intracellular and extracellular targets, acting as either a cytotoxic or a cytoprotective agent. NO stimulates seed germination in different species, and a decrease in NO levels has been associated with fruit maturation and senescence of flowers (Beligni and Lamattina, 2001). NO production has been observed in response to several biotic and abiotic stimuli, such as pathogen infection, bacterial elicitors, high temperature, osmotic stress, and UV-B light (Durner et al., 1998; Barroso et al., 1999; Krause and Durner, 2004; Zeidler et al., 2004; Shapiro, 2005; Corpas et al., 2008; Kolbert et al., 2008; Zhao et al., 2009).Despite the proven importance of NO, little is known about signaling pathways downstream from it. During both programmed cell death and defense responses, NO requires cGMP and cADP Rib as secondary messengers (Wendehenne et al., 2001). Furthermore, NO activates mitogen-activated protein kinases in different plant species during stress signaling (Nakagami et al., 2005). However, direct biological activity of NO arises from chemical reactions between proteins and NO itself (Foster and Stamler, 2004; Dahm et al., 2006). S-Nitrosylation is a labile posttranslational modification with a half-life of seconds to a few minutes and represents a very sensitive mechanism for regulating cellular processes (Hess et al., 2005). More than 100 candidate S-nitrosylated proteins were identified from extracts of Arabidopsis (Arabidopsis thaliana) cultured cells treated with the NO donor S-nitrosoglutathione (GSNO) and from Arabidopsis leaves treated with gaseous NO (Lindermayr et al., 2005). Using the same proteomic approach, changes were characterized in S-nitrosylated proteins in Arabidopsis leaves undergoing a hypersensitive response (Romero-Puertas et al., 2008).In animals, mitochondria play a crucial role in S-nitrosylation-dependent NO signaling (Foster and Stamler, 2004). The mitochondrion is an essential organelle for normal cellular function, being an important site of ATP synthesis and an integrator for apoptotic signaling (Skulachev, 1999). Mitochondria interact with NO at several levels. One particularly well-characterized example is the inhibition of complex IV (cytochrome c oxidase) via binding of NO to its binuclear CuB/heme a3 site (Cleeter et al., 1994). There are several reasons why S-nitrosylation may be an important mitochondrial regulatory mechanism. For example, mitochondria contain sizeable pools of thiols and transition metals, all of which are known to modulate nitrosothiol (SNO) biochemistry (Foster and Stamler, 2004). In addition, mitochondria are highly membranous and accumulate lipophilic molecules such as NO. Interesting in this respect is the fact that the formation of the S-nitrosylating intermediate N2O3 is enhanced within membranes (Burwell et al., 2006).The role of mitochondria in stress-related responses has been investigated in both animals and plants. Endogenous nitrosylation of the catalytic Cys site of a subset of mitochondrial caspases serves as an on/off switch regulating caspase activity during apoptosis (Mannick et al., 2001). Moreover, cytochrome c, which is modified by NO at its heme iron during apoptosis, is released from mitochondria into the cytoplasm, which plays a critical role in many forms of apoptosis by stimulating apoptosome formation and subsequent caspase activation (Schonhoff et al., 2003). We previously showed that a prime target of NO in plants is the mitochondrial apparatus, causing an inhibition of KCN-sensitive respiration and an activation of alternative respiration via alternative oxidase (AOX; Huang et al., 2002; Krause and Durner, 2004; Livaja et al., 2008).The aim of this study was to identify possible targets for S-nitrosylation in mitochondria of Arabidopsis leaves in order to gain more insight into the regulatory function of NO at the protein level. Using a proteomic approach involving the highly specific biotin-switch method for detection and purification of S-nitrosylated proteins (Jaffrey and Snyder, 2001) in conjunction with liquid chromatography and tandem mass spectrometry (nanoLC/MS/MS), we could identify 11 mitochondrial proteins as targets for S-nitrosylation. Among these identified proteins, we focused our attention on the P-subunit of the Gly decarboxylase complex (GDC), which is an integral part of the photorespiratory system. Since the release of apoptotic factors from mitochondria may be a result of inhibition of respiration, transition of mitochondrial permeability, and formation of reactive oxygen species (ROS; Saviani et al., 2002; Taylor et al., 2004; Chen and Gibson, 2008), we investigated the molecular mechanism and the function of GDC-Cys modification in Arabidopsis.  相似文献   
10.
BACKGROUND: Human diversity, namely single nucleotide polymorphisms (SNPs), is becoming a focus of biomedical research. Despite the binary nature of SNP determination, the majority of genotyping assay data need a critical evaluation for genotype calling. We applied statistical models to improve the automated analysis of 2-dimensional SNP data. METHODS: We derived several quantities in the framework of Gaussian mixture models that provide figures of merit to objectively measure the data quality. The accuracy of individual observations is scored as the probability of belonging to a certain genotype cluster, while the assay quality is measured by the overlap between the genotype clusters. RESULTS: The approach was extensively tested with a dataset of 438 nonredundant SNP assays comprising >150,000 datapoints. The performance of our automatic scoring method was compared with manual assignments. The agreement for the overall assay quality is remarkably good, and individual observations were scored differently by man and machine in 2.6% of cases, when applying stringent probability threshold values. CONCLUSION: Our definition of bounds for the accuracy for complete assays in terms of misclassification probabilities goes beyond other proposed analysis methods. We expect the scoring method to minimise human intervention and provide a more objective error estimate in genotype calling.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号