首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
  2017年   1篇
  2013年   1篇
排序方式: 共有2条查询结果,搜索用时 15 毫秒
1
1.
Synthetic and natural polymers are often used as drug delivery systems in vitro and in vivo. Biodegradable chitosan of different sizes were used to encapsulate antitumor drug tamoxifen (Tam) and its metabolites 4-hydroxytamoxifen (4-Hydroxytam) and endoxifen (Endox). The interactions of tamoxifen and its metabolites with chitosan 15, 100 and 200 KD were investigated in aqueous solution, using FTIR, fluorescence spectroscopic methods and molecular modeling. The structural analysis showed that tamoxifen and its metabolites bind chitosan via both hydrophilic and hydrophobic contacts with overall binding constants of K tam-ch-15  = 8.7 (±0.5)×103 M−1, K tam-ch-100  = 5.9 (±0.4)×105 M−1, K tam-ch-200  = 2.4 (±0.4)×105 M−1 and K hydroxytam-ch-15  = 2.6(±0.3)×104 M−1, K hydroxytam – ch-100  = 5.2 (±0.7)×106 M−1 and K hydroxytam-ch-200  = 5.1 (±0.5)×105 M−1, K endox-ch-15  = 4.1 (±0.4)×103 M−1, K endox-ch-100  = 1.2 (±0.3)×106 M−1 and K endox-ch-200  = 4.7 (±0.5)×105 M−1 with the number of drug molecules bound per chitosan (n) 2.8 to 0.5. The order of binding is ch-100>200>15 KD with stronger complexes formed with 4-hydroxytamoxifen than tamoxifen and endoxifen. The molecular modeling showed the participation of polymer charged NH2 residues with drug OH and NH2 groups in the drug-polymer adducts. The free binding energies of −3.46 kcal/mol for tamoxifen, −3.54 kcal/mol for 4-hydroxytamoxifen and −3.47 kcal/mol for endoxifen were estimated for these drug-polymer complexes. The results show chitosan 100 KD is stronger carrier for drug delivery than chitosan-15 and chitosan-200 KD.  相似文献   
2.
In this review, the binding and loading efficacy (LE) of anticancer drugs doxorubicin (DOX), tamoxifen (Tam) and its metabolites 4-hydroxytamoxifen (4-Hydroxytam) and endoxifen (Endox) with several synthetic polymers poly(ethylene glycol) (PEG), methoxypoly (ethylene glycol) polyamidoamine (mPEG-PAMAM-G3), and polyamidoamine (PAMAM-G4) dendrimers were compared in aqueous solution at pH 7.4. The results of multiple spectroscopic methods, transmission electron microscopy (TEM) and molecular modeling of conjugated drug–polymer were examined. Structural analysis showed that drug–polymer conjugation occurs mainly via H-bonding and hydrophobic contacts. The order of binding is PAMAM-G4 > mPEG-PAMAM-G3 > PEG-6000 with 4-hydroxttamoxifen forming more stable conjugate than tamoxifen and endoxifen. Doxorubicin shows stronger affinity for PAMAM-G4 than tamoxifen and its metabolites. The drug LE was 30–55%. TEM showed significant changes in the carrier morphology upon drug encapsulation. Modeling also showed that drug is located in the surface and in the internal cavities of PAMAM with DOX forming more stable polymer conjugates.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号