首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   117篇
  免费   20篇
  137篇
  2018年   2篇
  2017年   3篇
  2015年   6篇
  2014年   1篇
  2013年   5篇
  2012年   8篇
  2011年   4篇
  2010年   4篇
  2009年   7篇
  2008年   5篇
  2007年   12篇
  2006年   7篇
  2005年   5篇
  2004年   3篇
  2003年   7篇
  2002年   6篇
  2001年   6篇
  2000年   6篇
  1999年   7篇
  1998年   4篇
  1997年   7篇
  1996年   3篇
  1992年   1篇
  1991年   4篇
  1990年   1篇
  1989年   2篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
  1985年   2篇
  1984年   1篇
  1982年   1篇
  1977年   3篇
  1972年   1篇
排序方式: 共有137条查询结果,搜索用时 0 毫秒
1.
Altritol nucleic acids (ANAs) are a promising new tool in the development of artificial small interfering ribonucleic acids (siRNAs) for therapeutical applications. To mimic the siRNA:messenger RNA (mRNA) interactions, the crystal structure of the ANA:RNA construct a(CCGUAAUGCC-P):r(GGCAUUACGG) was determined to 1.96?? resolution which revealed the hybrid to form an A-type helix. As this A-form is a major requirement in the RNAi process, this crystal structure confirms the potential of altritol-modified siRNAs. Moreover, in the ANA strands, a new type of intrastrand interactions was found between the O2' hydroxyl group of one residue and the sugar ring O4' atom of the next residue. These interactions were further investigated by quantum chemical methods. Besides hydration effects, these intrastrand hydrogen bonds may also contribute to the stability of ANA:RNA duplexes.  相似文献   
2.
A low pH method of liposome-membrane fusion (Schneider et al., 1980, Proc. Natl. Acad. Sci. U. S. A. 77:442) was used to enrich the mitochondrial inner membrane lipid bilayer 30-700% with exogenous phospholipid and cholesterol. By varying the phospholipid-to- cholesterol ratio of the liposomes it was possible to incorporate specific amounts of cholesterol (up to 44 mol %) into the inner membrane bilayer in a controlled fashion. The membrane surface area increased proportionally to the increase in total membrane bilayer lipid. Inner membrane enriched with phospholipid only, or with phospholipid plus cholesterol up to 20 mol %, showed randomly distributed intramembrane particles (integral proteins) in the membrane plane, and the average distance between intramembrane particles increased proportionally to the amount of newly incorporated lipid. Membranes containing between 20 and 27 mol % cholesterol exhibited small clusters of intramembrane particles while cholesterol contents above 27 mol % resulted in larger aggregations of intramembrane particles. In phospholipid-enriched membranes with randomly dispersed intramembrane particles, electron transfer activities from NADH- and succinate-dehydrogenase to cytochrome c decreased proportionally to the increase in distance between the particles. In contrast, these electron- transfer activities increased with decreasing distances between intramembrane particles brought about by cholesterol incorporation. These results indicate that (a) catalytically interacting redox components in the mitochondrial inner membrane such as the dehydrogenase complexes, ubiquinone, and heme proteins are independent, laterally diffusible components; (b) the average distance between these redox components is effected by the available surface area of the membrane lipid bilayer; and (c) the distance over which redox components diffuse before collision and electron transfer mediates the rate of such transfer.  相似文献   
3.
Single-crystal X-ray structure determinations of the complex between the minor-groove binder distamycin and d(GGCCAATTGG) reveal two 1 : 1 binding modes which differ in the orientation of the drug molecule in the minor groove. The two crystals were grown from different crystallization conditions and found to diffract to 2.38 and 1.85 A, respectively. The structures were refined to completion using SHELXL-93, resulting in a residual R factor of 20.30% for the 2.38-A resolution structure (including 46 water molecules) and 19.74% for the 1.85-A resolution structure (including 74 water molecules). In both orientations, bifurcated hydrogen bonds are formed between the amide nitrogen atoms of the drug and AT base pairs. With a binding site of at least five base pairs, close contacts between the terminal distamycin atoms and guanine amino groups are inevitable. The detailed nature of several of these interactions was further investigated by ab initio quantum chemical methods.  相似文献   
4.
    

Background

At present, six accessible sequences of 16S rDNA from Taylorella equigenitalis (T. equigenitalis) are available, whose sequence differences occur at a few nucleotide positions. Thus it is important to determine these sequences from additional strains in other countries, if possible, in order to clarify any anomalies regarding 16S rDNA sequence heterogeneity. Here, we clone and sequence the approximate full-length 16S rDNA from additional strains of T. equigenitalis isolated in Japan, Australia and France and compare these sequences to the existing published sequences.

Results

Clarification of any anomalies regarding 16S rDNA sequence heterogeneity of T. equigenitalis was carried out. When cloning, sequencing and comparison of the approximate full-length 16S rDNA from 17 strains of T. equigenitalis isolated in Japan, Australia and France, nucleotide sequence differences were demonstrated at the six loci in the 1,469 nucleotide sequence. Moreover, 12 polymorphic sites occurred among 23 sequences of the 16S rDNA, including the six reference sequences.

Conclusion

High sequence similarity (99.5% or more) was observed throughout, except from nucleotide positions 138 to 501 where substitutions and deletions were noted.  相似文献   
5.
We describe a novel, fundamental property of nucleobase structure, namely, pyramidilization at the N1/9 sites of purine and pyrimidine bases. Through a combined analyses of ultra-high-resolution X-ray structures of both oligonucleotides extracted from the Nucleic Acid Database and isolated nucleotides and nucleosides from the Cambridge Structural Database, together with a series of quantum chemical calculations, molecular dynamics (MD) simulations, and published solution nuclear magnetic resonance (NMR) data, we show that pyramidilization at the glycosidic nitrogen is an intrinsic property. This property is common to isolated nucleosides and nucleotides as well as oligonucleotides—it is also common to both RNA and DNA. Our analysis suggests that pyramidilization at N1/9 sites depends in a systematic way on the local structure of the nucleoside. Of note, the pyramidilization undergoes stereo-inversion upon reorientation of the glycosidic bond. The extent of the pyramidilization is further modulated by the conformation of the sugar ring. The observed pyramidilization is more pronounced for purine bases, while for pyrimidines it is negligible. We discuss how the assumption of nucleic acid base planarity can lead to systematic errors in determining the conformation of nucleotides from experimental data and from unconstrained MD simulations.  相似文献   
6.
The ability of the four-stranded guanine (G)-DNA motif to incorporate nonstandard guanine analogue bases 6-oxopurine (inosine, I), 6-thioguanine (tG), and 6-thiopurine (tI) has been investigated using large-scale molecular dynamics simulations. The simulations suggest that a G-DNA stem can incorporate inosines without any marked effect on its structure and dynamics. The all-inosine quadruplex stem d(IIII)(4) shows identical dynamical properties as d(GGGG)(4) on the nanosecond time scale, with both molecular assemblies being stabilized by monovalent cations residing in the channel of the stem. However, simulations carried out in the absence of these cations show dramatic differences in the behavior of d(GGGG)(4) and d(IIII)(4). Whereas vacant d(GGGG)(4) shows large fluctuations but does not disintegrate, vacant d(IIII)(4) is completely disrupted within the first nanosecond. This is a consequence of the lack of the H-bonds involving the N2 amino group that is not present in inosine. This indicates that formation of the inosine quadruplex could involve entirely different intermediate structures than formation of the guanosine quadruplex, and early association of cations in this process appears to be inevitable. In the simulations, the incorporation of 6-thioguanine and 6-thiopurine sharply destabilizes four-stranded G-DNA structures, in close agreement with experimental data. The main reason is the size of the thiogroup leading to considerable steric conflicts and expelling the cations out of the channel of the quadruplex stem. The G-DNA stem can accommodate a single thioguanine base with minor perturbations. Incorporation of a thioguanine quartet layer is associated with a large destabilization of the G-DNA stem whereas the all-thioguanine quadruplex immediately collapses.  相似文献   
7.
  总被引:1,自引:0,他引:1  
Abstract.— Direct development in benthic marine invertebrates is usually associated with narrow geographical range, low rates of colonization, and low levels of gene flow. Paradoxically, the small brittle star Amphipholis squamata broods its larvae to a crawl-away juvenile stage, yet has a cosmopolitan distribution. Using sequence and restriction-fragment-length-polymorphisms (RFLP) analyses of nuclear and mitochondrial DNA from 16 coastal populations throughout New Zealand, we tested whether the species is indeed a poor disperser, as may be expected from its brooding habit. We predicted that local and regional populations would be genetically structured according to isolation by distance. We also suspected that this ubiquitous \"species\" is composed of a variety of cryptic taxa in different geographic areas, as has been discovered in an increasing number of marine invertebrates. We found evidence of four genetically divergent and reproductively isolated lineages that can exist in syntopy. Lineages vary in abundance, haplotype diversity, and geographic distribution. The partitioning of genetic variation within the most common lineage, as well as the geographic distribution of the four lineages, suggest a north/south split. This pattern is consistent with known New Zealand marine biogeographic zones and appears to be linked to the regime of oceanic circulation, which is characterized by subtropical, southward-moving water masses in the north, and sub-Antarctic, northward-moving water in the south. We conclude that the dispersal ability of A. squamata is regionally restricted but with sporadic long-distance dispersal, which serves to increase local genetic variation. Our results support the idea that dispersal occurs through passive transport by drifting or rafting on macroalgae, which A. squamata commonly inhabits, and emphasize that poor dispersal ability is not necessarily a corollary of direct development.  相似文献   
8.
The hepatitis delta virus (HDV) ribozyme is an RNA enzyme from the human pathogenic HDV. Cations play a crucial role in self-cleavage of the HDV ribozyme, by promoting both folding and chemistry. Experimental studies have revealed limited but intriguing details on the location and structural and catalytic functions of metal ions. Here, we analyze a total of approximately 200 ns of explicit-solvent molecular dynamics simulations to provide a complementary atomistic view of the binding of monovalent and divalent cations as well as water molecules to reaction precursor and product forms of the HDV ribozyme. Our simulations find that an Mg2+ cation binds stably, by both inner- and outer-sphere contacts, to the electronegative catalytic pocket of the reaction precursor, in a position to potentially support chemistry. In contrast, protonation of the catalytically involved C75 in the precursor or artificial placement of this Mg2+ into the product structure result in its swift expulsion from the active site. These findings are consistent with a concerted reaction mechanism in which C75 and hydrated Mg2+ act as general base and acid, respectively. Monovalent cations bind to the active site and elsewhere assisted by structurally bridging long-residency water molecules, but are generally delocalized.  相似文献   
9.
A computational analysis of d(GGGGTTTTGGGG)(2) guanine quadruplexes containing either lateral or diagonal four-thymidine loops was carried out using molecular dynamics (MD) simulations in explicit solvent, locally enhanced sampling (LES) simulations, systematic conformational search, and free energy molecular-mechanics, Poisson Boltzmann, surface area (MM-PBSA) calculations with explicit inclusion of structural monovalent cations. The study provides, within the approximations of the applied all-atom additive force field, a qualitatively complete analysis of the available loop conformational space. The results are independent of the starting structures. Major conformational transitions not seen in conventional MD simulations are observed when LES is applied. The favored LES structures consistently provide lower free energies (as estimated by molecular-mechanics, Poisson Boltzmann, surface area) than other structures. Unfortunately, the predicted optimal structure for the diagonal loop arrangement differs substantially from the atomic resolution experiments. This result is attributed to force field deficiencies, such as the potential misbalance between solute-cation and solvent-cation terms. The MD simulations are unable to maintain the stable coordination of the monovalent cations inside the diagonal loops as reported in a recent x-ray study. The optimal diagonal and lateral loop arrangements appear to be close in energy although a proper inclusion of the loop monovalent cations could stabilize the diagonal architecture.  相似文献   
10.
During eukaryotic cell division, the sister chromatids of duplicated chromosomes are pulled apart by microtubules, which connect via kinetochores. The kinetochore is a multiprotein structure that links centromeres to microtubules, and that emits molecular signals in order to safeguard the equal distribution of duplicated chromosomes over daughter cells. Although microtubule‐mediated chromosome segregation is evolutionary conserved, kinetochore compositions seem to have diverged. To systematically inventory kinetochore diversity and to reconstruct its evolution, we determined orthologs of 70 kinetochore proteins in 90 phylogenetically diverse eukaryotes. The resulting ortholog sets imply that the last eukaryotic common ancestor (LECA) possessed a complex kinetochore and highlight that current‐day kinetochores differ substantially. These kinetochores diverged through gene loss, duplication, and, less frequently, invention and displacement. Various kinetochore components co‐evolved with one another, albeit in different manners. These co‐evolutionary patterns improve our understanding of kinetochore function and evolution, which we illustrated with the RZZ complex, TRIP13, the MCC, and some nuclear pore proteins. The extensive diversity of kinetochore compositions in eukaryotes poses numerous questions regarding evolutionary flexibility of essential cellular functions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号