首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   638篇
  免费   64篇
  2021年   5篇
  2020年   3篇
  2019年   4篇
  2018年   7篇
  2017年   8篇
  2016年   6篇
  2015年   23篇
  2014年   24篇
  2013年   28篇
  2012年   32篇
  2011年   22篇
  2010年   14篇
  2009年   25篇
  2008年   24篇
  2007年   31篇
  2006年   26篇
  2005年   33篇
  2004年   23篇
  2003年   24篇
  2002年   23篇
  2001年   27篇
  2000年   31篇
  1999年   23篇
  1998年   16篇
  1997年   9篇
  1996年   8篇
  1995年   6篇
  1994年   5篇
  1993年   7篇
  1992年   13篇
  1991年   15篇
  1990年   11篇
  1989年   12篇
  1988年   18篇
  1987年   20篇
  1986年   18篇
  1985年   13篇
  1984年   5篇
  1983年   9篇
  1982年   8篇
  1981年   3篇
  1980年   5篇
  1979年   3篇
  1978年   3篇
  1977年   5篇
  1976年   3篇
  1973年   3篇
  1971年   4篇
  1970年   3篇
  1967年   2篇
排序方式: 共有702条查询结果,搜索用时 296 毫秒
1.
2.
Summary During the course of sea urchin development, from early blastula to pluteus larva, there are two major visible processes toward which all activities seem to be focused. They are the differentiation of the larval skeleton by the primary mesenchyme cells and the differentiation of the primitive gut by the secondary mesenchyme cells. These activities take place within the shell-like layer of epithelial cells, or ectodermal wall. The interactive role of the ectodermal wall with the mesenchyme cells is not yet clearly understood. A number of earlier studies have proposed that the ectoderm may have an inductive influence on the mesenchyme cells and that its inner surface forms a molecular template for guiding the mesenchyme cells. In this report, we suggest an additional role for the ectodermal wall. We show that some primary mesenchyme cells and secondary mesenchyme cells insert between the cells of the ectodermal wall in order to firmly anchor the anlage of the larval skeleton and primitive gut during differentiation. This mechanism may provide a physical basis for maintaining the stable positional relationship of the anlage during development.  相似文献   
3.
4.
The rate of the electromagnetic energy deposition and the resultant thermoregulatory response of a block model of a squirrel monkey exposed to plane-wave fields at 350 MHz were calculated using a finite-difference procedure. Noninvasive temperature measurements in live squirrel monkeys under similar exposure conditions were obtained using Vitek probes. Calculations exhibit reasonable correlation with the measured data, especially for the rise in colonic temperature.  相似文献   
5.
It has previously been shown that the B subunit of cholera toxin, which binds solely to the plasma membrane ganglioside GM1, stimulates the proliferation of rat thymic lymphocytes (Spiegel, S., P. H. Fishman, and R. J. Weber, 1985, Science [Wash. DC], 230:1285-1287). The purpose of this study was to identify which transmembrane signaling system(s) are activated by the B subunit of cholera toxin. We compared the effects of B subunit and concanavalin A (Con A), a potent mitogenic lectin, on a number of second messenger systems that are putative mediators of T cell activation. Changes in the fluorescence of quin2-loaded cells revealed that mitogenic doses of either B subunit or Con A induced rapid and sustained increases in cytoplasmic free Ca2+ ([Ca2+]i). Within 5 min, [Ca2+]i increased from a basal level of 69 +/- 4 to 136 +/- 17 and 185 +/- 24 nM, respectively. The effects of B subunit and Con A were additive and largely dependent on the presence of extracellular Ca2+, though release of Ca2+ from intracellular stores could be detected for Con A, but not B subunit, using indo-1. The B subunit had no effect on either inositol phosphate levels or on the distribution of protein kinase C, indicating that, unlike Con A, the B subunit does not activate phosphoinositide hydrolysis. Fluorimetric measurements on cells loaded with bis(carboxyethyl)-5,6-carboxyfluorescein revealed that Con A induced a rapid cytoplasmic alkalinization via activation of Na+/H+ exchange, whereas B subunit had no effect on intracellular pH. Finally, by monitoring bis-oxonol fluorescence, we found that Con A induced a small hyperpolarization of the membrane potential, whereas B subunit had no acute effect. These data suggest that the biological effects of B subunit are mediated by an increase in [Ca2+]i resulting from a net influx of extracellular Ca2+.  相似文献   
6.
A quantitative immunoblot assay was developed by using affinity-purified monospecific antibodies to quantitate levels of guanine nucleotide binding regulatory protein (G-protein) subunits in atria and ventricles during embryonic chicken cardiac development. The muscarinic acetylcholine receptor (mAChR) number was measured with [3H]quinuclidinyl benzilate. On day 10 of embryonic development (day 10E) there was no difference between the atrial and ventricular membrane concentrations of beta-subunit, G0 alpha subunit, or mAChR. The level of Gi alpha was found to be 44% greater in atria than in ventricles on day 10E. The atrial membrane concentration of beta-subunit increased 80% between day 13E and 15E, G0 alpha increased 46% between day 10E and 15E, mAChR increased 61% between day 10E and 12E, and Gi alpha decreased 34% between day 10E and 13E. The atrial levels of beta-subunit, G0 alpha, Gi alpha, and mAChR did not change further through day 20E. The ventricular membrane concentration of these proteins did not change between day 10E and 20E, except for that of G0 alpha, which increased 47% between day 15E and 20E. The atrial specific increase in beta-subunit correlated with a loss of GTP inhibition of basal adenylate cyclase activity. The difference in Gi alpha levels between atria and ventricles on day 10E correlated with a difference in carbachol sensitivity of atrial and ventricular basal adenylate cyclase activity. Thus, the levels of several components of the cholinergic neuroeffector pathway are regulated in a tissue-specific manner at a time that coincides with the onset of functional parasympathetic innervation of the embryonic chicken heart.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   
7.
Adipocytes of hypothyroid rats display an increased responsiveness to agents which function by inhibiting the production of cyclic AMP. Anti-peptide antisera which selectively recognise the alpha subunit of the inhibitory guanine nucleotide binding protein (Gi) detected a 40 kDa polypeptide in adipocyte plasma membranes of both euthyroid and hypothyroid rats. Amounts of the alpha subunit of Gi were elevated some 2-fold in the hypothyroid preparations in comparison with the euthyroid controls, when equal amounts of membrane protein of the two treatments were examined. As cells from the hypothyroid animals contained 2.7 times as much membrane protein as those from the control animals, the amounts of alpha subunit of Gi are elevated some 5.6-fold per cell in adipocytes of the hypothyroid animals compared with the euthyroid controls. Amounts of the 36 kDa beta subunit of G-proteins were also elevated in plasma membranes of adipocytes of hypothyroid animals, in this case by some 50% when compared on a protein basis. These results provide direct evidence for alterations in the amounts of the subunits of Gi caused by the hypothyroid state.  相似文献   
8.
Recombinant cDNAs encoding the alpha-subunits of Gi1, Gi2, Gi3, Go and Gs were transfected into COS cells with the pCD-PS mammalian expression vector. Expression of each G alpha was verified using subtype-specific peptide antisera on immunoblots. Quantitative immunoblotting of alpha and beta subunits indicated: i) that there was no change in expression of endogenous beta subunits, and ii) overexpression of alpha subunits could achieve a ratio of alpha:beta greater than 25:1. Despite the excess of alpha over beta, the G alpha subunits were found predominantly in the membrane fraction. The results demonstrate that G alpha subunits can attach to the membrane independently of beta gamma subunits.  相似文献   
9.
Translational regulation of somatostatin in cultured sympathetic neurons   总被引:2,自引:0,他引:2  
K Spiegel  V Wong  J A Kessler 《Neuron》1990,4(2):303-311
Coculture of sympathetic neurons with ganglion nonneuronal cells elevated levels of preprosomatostatin mRNA but did not alter neuronal synthesis, content, or release of somatostatin. Treatment of sympathetic neurons with culture medium conditioned by exposure to ganglion nonneuronal cells similarly elevated preprosomatostatin mRNA. Treatment with conditioned medium elevated somatostatin levels in pure neuronal cultures, but not in neurons cocultured with nonneuronal cells. Conditioned medium also failed to increase peptide levels in neurons cultured on a substratum of killed nonneuronal cells, despite a large increase in preprosomatostatin mRNA. These observations suggest that contact of sympathetic neurons with nonneuronal cell membranes inhibits the increase in peptide synthesis, but not the increase in preprosomatostatin mRNA after treatment with conditioned medium. Thus neuronal interactions with nonneuronal cells regulate somatostatin metabolism at both the mRNA and peptide levels. Regulatory effects on the mRNA and the peptide are separable and do not necessarily occur in parallel, and translational controls may be the rate-limiting factors.  相似文献   
10.
We investigated the mechanisms of receptor-mediated stimulation of high-affinity GTPase activity in response to opioid peptides and to foetal-calf serum in membranes of the neuroblastoma X glioma hybrid cell line NG108-15. Increases in GTPase activity in response to both of these ligands was abolished by prior exposure of the cells to pertussis toxin. Pertussis toxin in the presence of [32P]NAD+ catalysed incorporation of radioactivity into a broad band of approx. 40 kDa in membranes prepared from untreated, but not from pertussis-toxin-pretreated, cells. Additivity studies indicated that the responses to opioid peptides and to foetal-calf serum were mediated by separate guanine-nucleotide-binding proteins (G-proteins). Whereas opioid peptides produced an inhibition of adenylate cyclase in membranes of untreated cells, foetal-calf serum did not. Affinity-purified antibodies which recognize the C-terminus of the inhibitory G-protein identified a 40 kDa polypeptide in membranes of NG108-15 cells. These antibodies attenuated opioid-stimulated high-affinity GTPase activity, but did not markedly affect the response to foetal-calf serum. We conclude that receptors for the opioid peptides function via the inhibitory G-protein (Gi), whereas foetal-calf serum activates a second pertussis-toxin-sensitive G-protein, which has a C-terminal sequence significantly different from that of Gi.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号