首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   56篇
  免费   6篇
  2021年   1篇
  2020年   1篇
  2019年   1篇
  2018年   1篇
  2017年   1篇
  2016年   1篇
  2015年   4篇
  2014年   3篇
  2013年   5篇
  2012年   4篇
  2011年   1篇
  2010年   4篇
  2009年   2篇
  2008年   4篇
  2007年   4篇
  2006年   2篇
  2005年   2篇
  2003年   5篇
  2002年   4篇
  2001年   1篇
  2000年   1篇
  1999年   2篇
  1994年   2篇
  1990年   1篇
  1988年   1篇
  1985年   1篇
  1984年   2篇
  1982年   1篇
排序方式: 共有62条查询结果,搜索用时 46 毫秒
1.
We conducted two-dimensional (2D) discrete Fourier analyses of the spatial variation in refractive index of the spongy medullary keratin from four different colours of structurally coloured feather barbs from three species of bird: the rose-faced lovebird, Agapornis roseicollis (Psittacidae), the budgerigar, Melopsittacus undulatus (Psittacidae), and the Gouldian finch, Poephila guttata (Estrildidae). These results indicate that the spongy medullary keratin is a nanostructured tissue that functions as an array of coherent scatterers. The nanostructure of the medullary keratin is nearly uniform in all directions. The largest Fourier components of spatial variation in refractive index in the tissue are of the appropriate size to produce the observed colours by constructive interference alone. The peaks of the predicted reflectance spectra calculated from the 2D Fourier power spectra are congruent with the reflectance spectra measured by using microspectrophotometry. The alternative physical models for the production of these colours, the Rayleigh and Mie theories, hypothesize that medullary keratin is an incoherent array and that scattered waves are independent in phase. This assumption is falsified by the ring-like Fourier power spectra of these feathers, and the spacing of the scattering air vacuoles in the medullary keratin. Structural colours of avian feather barbs are produced by constructive interference of coherently scattered light waves from the optically heterogeneous matrix of keratin and air in the spongy medullary layer.  相似文献   
2.
Recent advances in the fields of chromatography, mass spectrometry, and chemical analysis have greatly improved the efficiency with which carotenoids can be extracted and analyzed from avian plumage. Prior to these technological developments, Brush (1968) [1] concluded that the burgundy-colored plumage of the male pompadour Cotinga Xipholena punicea is produced by a combination of blue structural color and red carotenoids, including astaxanthin, canthaxanthin, isozeaxanthin, and a fourth unidentified, polar carotenoid. However, X. punicea does not in fact exhibit any structural coloration. This work aims to elucidate the carotenoid pigments of the burgundy color of X. punicea plumage using advanced analytical methodology. Feathers were collected from two burgundy male specimens and from a third aberrant orange-colored specimen. Pigments were extracted using a previously published technique (McGraw et al. (2005) [2]), separated by high-performance liquid chromatography (HPLC), and analyzed by UV/Vis absorption spectroscopy, chemical analysis, mass spectrometry, nuclear magnetic resonance (NMR), and comparison with direct synthetic products. Our investigation revealed the presence of eight ketocarotenoids, including astaxanthin and canthaxanthin as reported previously by Brush (1968) [1]. Six of the ketocarotenoids contained methoxyl groups, which is rare for naturally-occurring carotenoids and a novel finding in birds. Interestingly, the carotenoid composition was the same in both the burgundy and orange feathers, indicating that feather coloration in X. punicea is determined not only by the presence of carotenoids, but also by interactions between the bound carotenoid pigments and their protein environment in the barb rami and barbules. This paper presents the first evidence of metabolically-derived methoxy-carotenoids in birds.  相似文献   
3.
Phylogenetic analyses of lekking, lek spatial organization, and cooperative and coordinated lek display in the manakins (Aves: Pipridae) demonstrate that variation in social behavior in the group has a strong, phylogenetic component. Two of the three classes of social behavior examined also show significant phylogenetic constraints. Current adaptive plasticity models are insufficient to explain the phylogenetic variation in these behaviors in the manakins. These findings support the conclusion that vertebrate reproductive social behavior has an evolutionary history, and that it is not determined solely by adaptive individual plasticity to current conditions. The evolution of social behavior, particularly through sexual selection, can have historical consequences that can limit subsequent behavioral adaptation.  相似文献   
4.
Endangered dholes (Cuon alpinus) are restricted to small and declining populations in Southeast Asia, and little is known about how their ecology differs within the region. We used DNA-confirmed scats and prey surveys to determine the seasonal diet and prey selection of dholes in 2 different landscapes that dominate Southeast Asia: closed evergreen forests in hilly terrain in northern Laos, and open deciduous forests in relatively flat terrain in eastern Cambodia. On both sites, muntjac (Muntiacus spp.; 20–28 kg) was the dominant prey item and was selectively consumed over other ungulates in all seasons. Our findings differ from previous conclusions, based largely on studies from India, that the preferred prey weight range of dholes was either 40–60 kg or 130–190 kg. Other important prey were sambar (Rusa unicolor) in Laos, and wild pig (Sus scrofa) and banteng (Bos javanicus) in Cambodia. Seasonal differences in overall diet occurred in Laos, but not Cambodia, primarily because of an increase in livestock consumption. The mean number of dhole scats in group defecation sites was higher in Cambodia (5.9 ± 0.5 [SE]) than Laos (2.4 ± 0.2), suggesting pack sizes were larger in Cambodia. Our results suggest that regardless of land cover type, prey diversity, or pack size, the management of muntjac will be important for conserving dhole populations in Southeast Asia. In Laos, we recommend that local villagers remove livestock from the protected area during the hot-dry season to reduce livestock predation by dholes. © 2020 The Authors. The Journal of Wildlife Management published by Wiley Periodicals LLC on behalf of The Wildlife Society.  相似文献   
5.
Rhodoxanthin is one of few retro-carotenoids in nature. These chromophores are defined by a pattern of single and double bond alternation that is reversed relative to most carotenoids. Rhodoxanthin is found in the plumage of several families of birds, including fruit doves (Ptilinopus, Columbidae) and the red cotingas (Phoenicircus, Cotingidae). The coloration associated with the rhodoxanthin-containing plumage of these fruit dove and cotinga species ranges from brilliant red to magenta or purple. In the present study, rhodoxanthin is characterized in situ by UV–Vis reflectance and resonance Raman spectroscopy to gain insights into the mechanisms of color-tuning. The spectra are compared with those of the isolated pigment in solution and in thin solid films. Key vibrational signatures are identified for three isomers of rhodoxanthin, primarily in the fingerprint region. Electronic structure (DFT) calculations are employed to describe the normal modes of vibration, and determine characteristic modes of retro-carotenoids. These results are discussed in the context of various mechanisms that change the electronic absorption, including structural distortion of the chromophore or enhanced delocalization of π-electrons in the ground-state. From the spectroscopic evidence, we suggest that the shift in absorption is likely a consequence of perturbations that primarily affect the excited state of the chromophore.  相似文献   
6.
Inversions of short genomic sequences play a central role in the generation of protein complexity. More than half of the 1300 motifs registered in ProSite have protein inverse complementary sequences (princoms) among proteins registered in SwissProt. The observed number of princoms occurrences exceeds by far the expected number (p < 10(-10)). Princoms often endow their host proteins with a whole new range of biochemical and physiological capabilities, including the possibility of intramolecular and intermolecular disulfide bond formation. These results support the idea that, like the duplications, the inversions of small genomic fragments have been a fundamental mechanism for shaping genomes.  相似文献   
7.
Genetic variation in the melanocortin‐1 receptor (MC1R) locus is responsible for color variation, particularly melanism, in many groups of vertebrates. Fairy‐wrens, Maluridae, are a family of Australian and New Guinean passerines with several instances of dramatic shifts in plumage coloration, both intra‐ and inter‐specifically. A number of these color changes are from bright blue to black plumage. In this study, we examined sequence variation at the MC1R locus in most genera and species of fairy‐wrens. Our primary focus was subspecies of the white‐winged fairy‐wren Malurus leucopterus in which two subspecies, each endemic to islands off the western Australian coast, are black while the mainland subspecies is blue. We found fourteen variable amino acid residues within M. leucopterus, but at only one position were alleles perfectly correlated with plumage color. Comparison with other fairy‐wren species showed that the blue mainland subspecies, not the black island subspecies, had a unique genotype. Examination of MC1R protein sequence variation across our sample of fairy‐wrens revealed no correlation between plumage color and sequence in this group. We thus conclude that amino acid changes in the MC1R locus are not directly responsible for the black plumage of the island subspecies of M. leucopterus. Our examination of the nanostructure of feathers from both black and blue subspecies of M. leucopterus and other black and blue fairy‐wren species clarifies the evolution of black plumage in this family. Our data indicate that the black white‐winged fairy‐wrens evolved from blue ancestors because vestiges of the nanostructure required for the production of blue coloration exist within their black feathers. Based on our phylogeographic analysis of M. leucopterus, in which the two black subspecies do not appear to be each other's closest relatives, we infer that there have been two independent evolutionary transitions from blue to black plumage. A third potential transition from blue to black appears to have occurred in a sister clade.  相似文献   
8.
Investigation of feathers from the famous Middle Eocene Messel Oil Shale near Darmstadt, Germany shows that they are preserved as arrays of fossilized melanosomes, the surrounding beta-keratin having degraded. The majority of feathers are preserved as aligned rod-shaped eumelanosomes. In some, however, the barbules of the open pennaceous, distal portion of the feather vane are preserved as a continuous external layer of closely packed melanosomes enclosing loosely aligned melanosomes. This arrangement is similar to the single thin-film nanostructure that generates an iridescent, structurally coloured sheen on the surface of black feathers in many lineages of living birds. This is, to our knowledge, the first evidence of preservation of a colour-producing nanostructure in a fossil feather and confirms the potential for determining colour differences in ancient birds and other dinosaurs.  相似文献   
9.
The geometry of feather barbs (barb length and barb angle) determines feather vane asymmetry and vane rigidity, which are both critical to a feather''s aerodynamic performance. Here, we describe the relationship between barb geometry and aerodynamic function across the evolutionary history of asymmetrical flight feathers, from Mesozoic taxa outside of modern avian diversity (Microraptor, Archaeopteryx, Sapeornis, Confuciusornis and the enantiornithine Eopengornis) to an extensive sample of modern birds. Contrary to previous assumptions, we find that barb angle is not related to vane-width asymmetry; instead barb angle varies with vane function, whereas barb length variation determines vane asymmetry. We demonstrate that barb geometry significantly differs among functionally distinct portions of flight feather vanes, and that cutting-edge leading vanes occupy a distinct region of morphospace characterized by small barb angles. This cutting-edge vane morphology is ubiquitous across a phylogenetically and functionally diverse sample of modern birds and Mesozoic stem birds, revealing a fundamental aerodynamic adaptation that has persisted from the Late Jurassic. However, in Mesozoic taxa stemward of Ornithurae and Enantiornithes, trailing vane barb geometry is distinctly different from that of modern birds. In both modern birds and enantiornithines, trailing vanes have larger barb angles than in comparatively stemward taxa like Archaeopteryx, which exhibit small trailing vane barb angles. This discovery reveals a previously unrecognized evolutionary transition in flight feather morphology, which has important implications for the flight capacity of early feathered theropods such as Archaeopteryx and Microraptor. Our findings suggest that the fully modern avian flight feather, and possibly a modern capacity for powered flight, evolved crownward of Confuciusornis, long after the origin of asymmetrical flight feathers, and much later than previously recognized.  相似文献   
10.
Evolution of the morphological innovations of feathers   总被引:1,自引:0,他引:1  
Feathers are complex assemblages of multiple morphological innovations. Recent research on the development and evolution of feathers has produced new insights into the origin and diversification of the morphological innovations in feathers. In this article, I review and discuss the contribution of three different factors to the evolution of morphological innovations in feathers: feather tubularity, hierarchical morphological modularity, and the co-option molecular signaling modules. The developing feather germ is a tube of epidermis with a central dermal pulp. The tubular organization of the feather germ and follicle produces multiple axes over which morphological differentiation can be organized. Feather complexity is organized into a hierarchy of morphological modules. These morphological modules evolved through the innovative differentiation along multiple different morphological axes created by the tubular feather germ. Concurrently, many of the morphological innovations of feathers evolved through the evolutionary co-option of plesiomorphic molecular signaling modules. Gene co-option also reveals a role for contingency in the evolution of hierarchical morphological innovations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号