首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   80篇
  免费   4篇
  2019年   2篇
  2016年   8篇
  2015年   3篇
  2014年   3篇
  2013年   7篇
  2012年   2篇
  2011年   2篇
  2010年   3篇
  2009年   2篇
  2008年   5篇
  2007年   4篇
  2006年   6篇
  2005年   3篇
  2004年   6篇
  2003年   2篇
  2002年   3篇
  2001年   1篇
  2000年   1篇
  1999年   4篇
  1998年   1篇
  1997年   2篇
  1996年   1篇
  1992年   4篇
  1991年   2篇
  1988年   3篇
  1986年   1篇
  1985年   1篇
  1983年   1篇
  1980年   1篇
排序方式: 共有84条查询结果,搜索用时 296 毫秒
1.
2.
Prokaryotic expression of polypeptides as fusion proteins with glutathione-S-transferase has recently been reported as a one-step means of purifying recombinant protein. The usefulness of the glutathione-S-transferase/glutathioneagarose system, however, is significantly limited by the frequent synthesis of recombinant proteins in insuluble form by Escherichia coli. We have found that for 5 separate fusion proteins containing glutathione-S-transferase and different domains of the large cystic fibrosis transmembrane conductance regulator, all were packaged in insoluble form by E. coli. Insolubility of these products made them inaccessible to one-step purification utilizing this scheme requires proper folding of recombinant glutathione-S-transferase to allow recognition on glutathione affinity agarose, we investigated the suitability of several alternative approaches for converting insoluble recombinant fusion proteins to a soluble form amenable to glutathione-agarose affinity purification. Low-temperature induction of fusion protein synthesis, but not incubation with anion-exchange resins, led to improved one-step purification of glutathione-S-transferase fusion proteins from E. coli cell lysate using mild, nondenaturing conditions. Solubilization in 8 mol/L urea, but not with other chaotropic agents or detergents, also allowed preparative yields of affinity-purified fusion protein. These techniques increase the usefulness of this recombinant protein purification scheme, and should be broadly applicable to diverse polypeptides synthesized as fusions with glutathione-S-transferase.  相似文献   
3.
The majority of mutations which lead to clinical cystic fibrosis are located within the two predicted nucleotide binding domains of the cystic fibrosis gene product. We have used a prokaryotic expression system to synthesize and purify the first nucleotide binding domain (NBD-1, amino acids 426-588) with and without the most common mutation associated with the disease (the deletion of phenylalanine at position 508, delta F508). Both wild type and delta F508 NBD-1 bind ATP-agarose in a quantitatively comparable manner; this binding was inhibited by excess Na2ATP, trinitrophenol-ATP, or 8-azido-ATP. Irreversible NBD-1 labeling by an ATP analog was demonstrated using [32P]8-azido-ATP. This covalent labeling was inhibited by preincubation with Na2ATP, with half-maximal inhibition for Na2ATP occurring at approximately 5 mM for both the wild type and delta F508 nucleotide binding domain. These experiments are among the first to confirm the expectation that the cystic fibrosis transmembrane conductance regulator NBD-1 binds nucleotide. Since, under the conditions used in our study, NBD-1 without phenylalanine 508 displays very similar nucleotide binding characteristics to the wild type protein, our results support previous structural models which predict that the delta F508 mutation should not cause an alteration in ATP binding.  相似文献   
4.
We demonstrate the use of a high resolution form of optical coherence tomography, termed micro-OCT (μOCT), for investigating the functional microanatomy of airway epithelia. μOCT captures several key parameters governing the function of the airway surface (airway surface liquid depth, periciliary liquid depth, ciliary function including beat frequency, and mucociliary transport rate) from the same series of images and without exogenous particles or labels, enabling non-invasive study of dynamic phenomena. Additionally, the high resolution of μOCT reveals distinguishable phases of the ciliary stroke pattern and glandular extrusion. Images and functional measurements from primary human bronchial epithelial cell cultures and excised tissue are presented and compared with measurements using existing gold standard methods. Active secretion from mucus glands in tissue, a key parameter of epithelial function, was also observed and quantified.  相似文献   
5.
6.
7.
8.

Background  

Parkinson's disease (PD) is the second most common neurodegenerative disorder. As there is no definitive diagnostic test, its diagnosis is based on clinical criteria. Recently transcranial duplex scanning (TCD) of the substantia nigra in the brainstem has been proposed as an instrument to diagnose PD. We and others have found that TCD scanning of substantia nigra duplex is a relatively accurate diagnostic instrument in patients with parkinsonian symptoms. However, all studies on TCD so far have involved well-defined, later-stage PD patients, which will obviously lead to an overestimate of the diagnostic accuracy of TCD.  相似文献   
9.
Modulator compounds intended to overcome disease-causing mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) show significant promise in clinical testing for cystic fibrosis. However, the mechanism(s) of action underlying these compounds are not fully understood. Activation of CFTR ion transport requires PKA-regulated phosphorylation of the regulatory domain (R-D) and dimerization of the nucleotide binding domains. Using a newly developed assay, we evaluated nine compounds including both CFTR potentatiators and activators discovered via various high-throughput screening strategies to acutely augment CFTR activity. We found considerable differences in the effects on R-D phosphorylation. Some (including UC(CF)-152) stimulated robust phosphorylation, and others had little effect (e.g., VRT-532 and VX-770). We then compared CFTR activation by UC(CF)-152 and VRT-532 in Ussing chamber studies using two epithelial models, CFBE41o(-) and Fischer rat thyroid cells, expressing various CFTR forms. UC(CF)-152 activated wild-type-, G551D-, and rescued F508del-CFTR currents but did not potentiate cAMP-mediated CFTR activation. In contrast, VRT-532 moderately activated CFTR short-circuit current and strongly potentiated forskolin-mediated current. Combined with the result that UC(CF)-152, but not VRT-532 or VX-770, acts by increasing CFTR R-D phosphorylation, these findings indicate that potentiation of endogenous cAMP-mediated activation of mutant CFTR is not due to a pathway involving augmented R-D phosphorylation. This study presents an assay useful to distinguish preclinical compounds by a crucial mechanism underlying CFTR activation, delineates two types of compound able to acutely augment CFTR activity (e.g., activators and potentiators), and demonstrates that a number of different mechanisms can be successfully employed to activate mutant CFTR.  相似文献   
10.
Efficient endocytosis of the cystic fibrosis transmembrane conductance regulator (CFTR) is mediated by a tyrosine-based internalization signal in the CFTR carboxyl-terminal tail 1424YDSI1427. In the present studies, two naturally occurring cystic fibrosis mutations in the amino terminus of CFTR, R31C, and R31L were examined. To determine the defect that these mutations cause, the Arg-31 mutants were expressed in COS-7 cells and their biogenesis and trafficking to the cell surface tested in metabolic pulse-chase and surface biotinylation assays, respectively. The results indicated that both Arg-31 mutants were processed to band C at approximately 50% the efficiency of the wild-type protein. However, once processed and delivered to the cell surface, their half-lives were the same as wild-type protein. Interestingly, indirect immunofluorescence and cell surface biotinylation indicated that the surface pool was much smaller than could be accounted for based on the biogenesis defect alone. Therefore, the Arg-31 mutants were tested in internalization assays and found to be internalized at 2x the rate of the wild-type protein. Patch clamp and 6-methoxy-N-(3-sulfopropyl)quinolinium analysis confirmed reduced amounts of functional Arg-31 channels at the cell surface. Together, the results suggest that both R31C and R31L mutations compromise biogenesis and enhance internalization of CFTR. These two additive effects contribute to the loss of surface expression and the associated defect in chloride conductance that is consistent with a disease phenotype.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号