首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   50篇
  免费   0篇
  2022年   1篇
  2020年   2篇
  2018年   1篇
  2017年   4篇
  2016年   1篇
  2015年   4篇
  2014年   2篇
  2013年   7篇
  2012年   4篇
  2011年   5篇
  2010年   5篇
  2008年   5篇
  2007年   1篇
  2006年   1篇
  2005年   2篇
  2004年   1篇
  2003年   2篇
  2002年   2篇
排序方式: 共有50条查询结果,搜索用时 19 毫秒
1.
The presence of aromatic clusters has been found to be an integral feature of many proteins isolated from thermophilic microorganisms. Residues found in aromatic cluster interact via π–π or C–H?π bonds between the phenyl rings, which are among the weakest interactions involved in protein stability. The lone aromatic cluster in human carbonic anhydrase II (HCA II) is centered on F226 with the surrounding aromatics F66, F95 and W97 located 12 Å posterior the active site; a location which could facilitate proper protein folding and active site construction. The role of F226 in the structure, catalytic activity and thermostability of HCA II was investigated via site-directed mutagenesis of three variants (F226I/L/W) into this position. The measured catalytic rates of the F226 variants via 18O-mass spectrometry were identical to the native enzyme, but differential scanning calorimetry studies revealed a 3–4 K decrease in their denaturing temperature. X-ray crystallographic analysis suggests that the structural basis of this destabilization is via disruption and/or removal of weak C–H?π interactions between F226 to F66, F95 and W97. This study emphasizes the importance of the delicate arrangement of these weak interactions among aromatic clusters in overall protein stability.  相似文献   
2.
Guar (Cyamopsis tetragonoloba L. Taub) is a drought tolerant and multipurpose grain legume cash crop grown primarily under rainfed conditions in several countries. The effect of various growth regulators and their combinations on a variety of explants, namely the embryo, cotyledons, cotyledonary nodes, shoot tip and hypocotyle, has been studied and an efficient system for callus induction and regeneration from callus has been developed. It was established that Murashige and Skoogs culture medium containing 2,4-dichlorophenoxyacetic acid (10.0M) in combination with 6-benzylaminopurine (5.0M) with embryo or cotyledon explants is most suitable for induction of green and friable morphogenic callus, with a range of 82.5–95% of cultured explants responding to callus induction. Efficient de novo shoot regeneration was achieved by culturing the callus obtained on this medium on Murashige and Skoogs medium containing 1-naphthlenacetic acid (13.0M) in combination with 6-benzylaminopurine (5.0M) with a range of 82.1–88.4% of callus clumps producing 20–25 shoots. In vitro rooting of cultured shoots was obtained on half-salt concentration of Murashige and Skoogs culture medium supplied with indole-3-butyric acid (5.0M) on which 82–90% of cultured shoots produced healthy roots. The in vitro regenerated plants were grown to pod setting and subsequent maturity under greenhouse conditions.  相似文献   
3.
The F(1)F(0)-ATP synthase enzyme is located in the inner mitochondrial membrane, where it forms dimeric complexes. Dimerization of the ATP synthase involves the physical association of the neighboring membrane-embedded F(0)-sectors. In yeast, the F(0)-sector subunits g and e (Su g and Su e, respectively) play a key role in supporting the formation of ATP synthase dimers. In this study we have focused on Su g to gain a better understanding of the function and the molecular organization of this subunit within the ATP synthase complex. Su g proteins contain a GXXXG motif (G is glycine, and X is any amino acid) in their single transmembrane segment. GXXXG can be a dimerization motif that supports helix-helix interactions between neighboring transmembrane segments. We demonstrate here that the GXXXG motif is important for the function and in particular for the stability of Su g within the ATP synthase. Using site-directed mutagenesis and cross-linking approaches, we demonstrate that Su g and Su e interact, and our findings emphasize the importance of the membrane anchor regions of these proteins for their interaction. Su e also contains a conserved GXXXG motif in its membrane anchor. However, data presented here would suggest that an intact GXXXG motif in Su g is not essential for the Su g-Su e interaction. We suggest that the GXXXG motif may not be the sole basis for a Su g-Su e interaction, and possibly these dimerization motifs may enable both Su g and Su e to interact with another mitochondrial protein.  相似文献   
4.
5.
6.
Goats form the backbone of rural livelihood and financial security systems in India but their population is showing decreasing trend. Improvement of reproductive traits such as prolificacy offers a solution to stabilize the decreasing goat population and to meet the nutritional needs of growing human population. In the present study, six novel SNPs in three candidate genes for prolificacy (BMPR1B, BMP15, and GDF9) were genotyped in seven breeds of Indian goats to evaluate their association with litter size. Tetra primer ARMS-PCR and PCR-RFLP based protocols were developed for genotyping six novel SNPs, namely, T(-242)C in BMPR1B; G735A and C808G in BMP15; and C818T, A959C, and G1189A in GDF9 gene. The effect of breed was highly significant (p ≤ 0.01) on litter size but the effect of genotype was nonsignificant. The effect of parity on litter size was also significant in the prolific Black Bengal breed. The litter size differences observed between breeds are attributed to breed differences. Novel mutations observed at different loci in GDF9, BMP15, and BMPR1B genes do not contribute to the reproductive capability of the investigated breeds. Further studies with more number of breeds and animals exploring association of these novel SNPs with reproductive traits may be fruitful.  相似文献   
7.
The factors that control the initiation of eukaryotic DNA replication from defined origins (oris) on the chromosome remain incompletely resolved. Here we show that the circular rDNA episome of the human pathogen Entamoeba histolytica contains multiple potential oris, which are utilized in a differential manner. The primary ori in exponentially growing cells was mapped close to the promoter of rRNA genes in the upstream intergenic spacer (IGS) by two-dimensional gel electrophoresis. Replication initiated predominantly from the upstream IGS and terminated in the downstream IGS. However, when serum-starved cells were allowed to resume growth, the early oris which became activated were located in other parts of the molecule. Later the ori in the upstream IGS became activated, with concomitant silencing of the early oris. When the upstream IGS was located ectopically in an artificial plasmid, it again lost ori activity, while other parts of the rDNA episome could function as oris in this system. Therefore, the activation or silencing of the ori in this episome is context dependent, as is also the case with many eukaryotic replicons. This is the first replication origin to be mapped in this primitive protozoan and will provide an opportunity to define the factors involved in differential ori activity, and their comparison with metazoans.  相似文献   
8.
Fifty two aerobic and endospore forming Bacilli (AEFB) strains were recovered from rhizospheric soil of Phyllanthus amarus. Morphological, biochemical and molecular characterization by 16S rDNA gene sequencing has shown that these bacterial strains belong to six different genera of AEFB i.e. Bacillus, Brevibacillus, Lysinibacillus, Paenibacillus, Terribacillus and Jeotgalibacillus. Analysis of their PGP activities has shown that 92.30 % strains produced indole acetic acid hormone, 86.53 % of the strains solubilized Phosphate and 44.23 % strains produced siderophore. Chitinase production activity was shown by 42.30 % of the strains and 21.15 % of the strains produced 1-amino cyclopropane-1-carboxylate (ACC) deaminase. 46.15 % of isolates have shown antagonistic activity against common fungal pathogen of the plant i.e. Corynespora cassiicola. Among all of the isolated strains B. Cereus JP44SK22 and JP44SK42 have shown all of the six plant growth promoting traits tested. B. megaterium strains (JP44SK18 and JP44SK35), Lysinibacillus sphaericus strains (JP44SK3 and JP44SK4) and Brevibacillus laterosporus strain JP44SK51 have also shown multiple PGP activities except ACC deaminase production activity. In the present study bacterial strain belonging to genera Jeotgalibacillus sp. JP44SK37 has been reported first time as a member of rhizospheric soil habitat and has also shown PGP activities. It can be concluded that Rhizosphere of P. amarus has harboured a good diversity of AEFB bacterial strains having a lot of biofertilizing and biocontrol abilities.  相似文献   
9.
G‐protein‐coupled receptor kinase 2 (GRK2) is a member of a kinase family originally discovered for its role in the phosphorylation and desensitization of G‐protein‐coupled receptors. It is expressed in high levels in myeloid cells and its levels are altered in many inflammatory disorders including sepsis. To address the physiological role of myeloid cell‐specific GRK2 in inflammation, we generated mice bearing GRK2 deletion in myeloid cells (GRK2?mye). GRK2?mye mice exhibited exaggerated inflammatory cytokine/chemokine production, and organ injury in response to lipopolysaccharide (LPS, a TLR4 ligand) when compared to wild‐type littermates (GRK2fl/fl). Consistent with this, peritoneal macrophages from GRK2?mye mice showed enhanced inflammatory cytokine levels when stimulated with LPS. Our results further identify TLR4‐induced NF‐κB1p105‐ERK pathway to be selectively regulated by GRK2. LPS‐induced activation of NF‐κB1p105‐MEK‐ERK pathway is significantly enhanced in the GRK2?mye macrophages compared to GRK2fl/fl cells and importantly, inhibition of the p105 and ERK pathways in the GRK2?mye macrophages, limits the enhanced production of LPS‐induced cytokines/chemokines. Taken together, our studies reveal previously undescribed negative regulatory role for GRK2 in TLR4‐induced p105‐ERK pathway as well as in the consequent inflammatory cytokine/chemokine production and endotoxemia in mice. J. Cell. Physiol. 226: 627–637, 2011. © 2010 Wiley‐Liss, Inc.  相似文献   
10.
G-protein coupled receptor kinase-5 (GRK5) is a serine/threonine kinase discovered for its role in the regulation of G-protein coupled receptor signaling. Recent studies have shown that GRK5 is also an important regulator of signaling pathways stimulated by non-GPCRs. This study was undertaken to determine the physiological role of GRK5 in Toll-like receptor-4-induced inflammatory signaling pathways in vivo and in vitro. Using mice genetically deficient in GRK5 (GRK5(-/-) ) we demonstrate here that GRK5 is an important positive regulator of lipopolysaccharide (LPS, a TLR4 agonist)-induced inflammatory cytokine and chemokine production in vivo. Consistent with this role, LPS-induced neutrophil infiltration in the lungs (assessed by myeloperoxidase activity) was markedly attenuated in the GRK5(-/-) mice compared to the GRK5(+/+) mice. Similar to the in vivo studies, primary macrophages from GRK5(-/-) mice showed attenuated cytokine production in response to LPS. Our results also identify TLR4-induced NFκB pathway in macrophages to be selectively regulated by GRK5. LPS-induced IκBα phosphorylation, NFκB p65 nuclear translocation, and NFκB binding were markedly attenuated in GRK5(-/-) macrophages. Together, our findings demonstrate that GRK5 is a positive regulator of TLR4-induced IκBα-NFκB pathway as well as a key modulator of LPS-induced inflammatory response.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号