首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   270篇
  免费   6篇
  国内免费   1篇
  2023年   2篇
  2022年   5篇
  2021年   7篇
  2020年   13篇
  2019年   9篇
  2018年   5篇
  2017年   4篇
  2016年   12篇
  2015年   15篇
  2014年   17篇
  2013年   13篇
  2012年   23篇
  2011年   29篇
  2010年   14篇
  2009年   9篇
  2008年   10篇
  2007年   9篇
  2006年   20篇
  2005年   11篇
  2004年   17篇
  2003年   12篇
  2002年   5篇
  2001年   4篇
  2000年   4篇
  1999年   5篇
  1996年   1篇
  1992年   1篇
  1991年   1篇
排序方式: 共有277条查询结果,搜索用时 15 毫秒
1.
The changes of immunoglobulin-G and creatinine levels in mid-altitude were investigated in rabbits. The animals living at sea level were exposed to 2240 m altitude for 22 days period. When compared with sea level values; immunoglobulin-G levels were significantly low. Serum creatinine level decreased significantly in the 2nd day, then reached the sea level amount on the 12th day. On the 22nd day a significant increase was observed. It was concluded that the decrease in immunoglobulin-G values may be due to the depression of protein synthesis. The increase in plasma creatinine level would be explained by the decrease in urine.  相似文献   
2.
The ER‐bound kinase/endoribonuclease (RNase), inositol‐requiring enzyme‐1 (IRE1), regulates the phylogenetically most conserved arm of the unfolded protein response (UPR). However, the complex biology and pathology regulated by mammalian IRE1 cannot be fully explained by IRE1’s one known, specific RNA target, X box‐binding protein‐1 (XBP1) or the RNA substrates of IRE1‐dependent RNA degradation (RIDD) activity. Investigating other specific substrates of IRE1 kinase and RNase activities may illuminate how it performs these diverse functions in mammalian cells. We report that macrophage IRE1 plays an unprecedented role in regulating phosphatidylinositide‐derived signaling lipid metabolites and has profound impact on the downstream signaling mediated by the mammalian target of rapamycin (mTOR). This cross‐talk between UPR and mTOR pathways occurs through the unconventional maturation of microRNA (miR) 2137 by IRE1’s RNase activity. Furthermore, phosphatidylinositol (3,4,5) phosphate (PI(3,4,5)P3) 5‐phosphatase‐2 (INPPL1) is a direct target of miR‐2137, which controls PI(3,4,5)P3 levels in macrophages. The modulation of cellular PI(3,4,5)P3/PIP2 ratio and anabolic mTOR signaling by the IRE1‐induced miR‐2137 demonstrates how the ER can provide a critical input into cell growth decisions.  相似文献   
3.
Abstract

In this study, bacteria were isolated from two different magnesite quarries in Turanocak and Ortaocak mine in Kütahya-Eski?ehir region, one of the largest processed magnesite reserves in Turkey. The obtained isolates have a potential to solve important magnesite pollutant CaCO3 but incapable to solve magnesium that has the most crucial role in the industry. Thus, potential bacteria were identified to be used for magnesite enrichment studies. The obtained isolates were identified and characterized according to the morphological, physiological, biochemical, and molecular techniques (16S rDNA PCR). According to the gene sequencing analysis Bacillus genus bacteria have the ability to solve CaCO3. The data of the 16S rDNA gene sequence showed that there were 13 active strains grouped in Bacillus. These active strains; Bacillus sp (3), Bacillus atrophaeus (2), Bacillus thuringiensis (1), Bacillus circulans (1), Bacillus simplex (3), Bacillus endophyticus (1) Bacillus drentensis (1) and Bacillus idriensis (1).  相似文献   
4.
Sarcomas are rare and heterogeneous mesenchymal tumors affecting both pediatric and adult populations with more than 70 recognized histologies. Doxorubicin and ifosfamide have been the main course of therapy for treatment of sarcomas; however, the response rate to these therapies is about 10–20% in metastatic setting. Toxicity with the drug combination is high, response rates remain low, and improvement in overall survival, especially in the metastatic disease, remains negligible and new agents are needed. Wee1 is a critical component of the G2/M cell cycle checkpoint control and mediates cell cycle arrest by regulating the phosphorylation of CDC2. Inhibition of Wee1 by MK1775 has been reported to enhance the cytotoxic effect of DNA damaging agents in different types of carcinomas. In this study we investigated the therapeutic efficacy of MK1775 in various sarcoma cell lines, patient-derived tumor explants ex vivo and in vivo both alone and in combination with gemcitabine, which is frequently used in the treatment of sarcomas. Our data demonstrate that MK1775 treatment as a single agent at clinically relevant concentrations leads to unscheduled entry into mitosis and initiation of apoptotic cell death in all sarcomas tested. Additionally, MK1775 significantly enhances the cytotoxic effect of gemcitabine in sarcoma cells lines with different p53 mutational status. In patient-derived bone and soft tissue sarcoma samples we showed that MK1775 alone and in combination with gemcitabine causes significant apoptotic cell death. Magnetic resonance imaging (MRI) and histopathologic studies showed that MK1775 induces significant cell death and terminal differentiation in a patient-derived xenograft mouse model of osteosarcoma in vivo. Our results together with the high safety profile of MK1775 strongly suggest that this drug can be used as a potential therapeutic agent in the treatment of both adult as well as pediatric sarcoma patients.  相似文献   
5.
6.
Sulfonamide-bearing thiazole compounds were synthesized and their inhibitory effects on the activity of purified human carbonic anhydrase I and II were evaluated. Human carbonic anhydrase isoenzymes (hCA-I and hCA-II) were purified from erythrocyte cells by affinity chromatography. The inhibitory effects of the 12 synthesized sulfonamide (5al) on the hydratase and esterase activities of these isoenzymes (hCA-I and hCA-II) were studied in vitro. In relation to these activities, the inhibition equilibrium constants (Ki) were determined. The results showed that all the synthesized compounds inhibited the CA isoenzyme activity. Among them 5b was found to be the most active (IC50?=?0.35?μM; Ki: 0.33?μM) for hCA I and hCA II.  相似文献   
7.
New aziridine 2‐phosphonic acids were prepared by monohydrolysis of the aziridine 2‐phosphonates that were obtained by the modified Gabriel?Cromwell reaction of vinyl phosphonate or α‐tosylvinyl phosphonate with a primary amine or a chiral amine. The cellular cytotoxicity of these compounds was tested against the HCT‐116 colorectal cancer cell lines and the CCD‐18Co normal colon fibroblast lines using the MTT assay. Three of the synthesized phosphonic acid derivatives 2e (ethyl hydrogen {(2S)‐1‐[(1S)‐1‐(naphthalen‐2‐yl)ethyl]aziridin‐2‐yl}phosphonate), 2h (ethyl hydrogen (1‐benzylaziridin‐2‐yl)phosphonate), and 2i (ethyl hydrogen (1‐cyclohexylaziridin‐2‐yl)phosphonate) showed higher cytotoxicity than the reference cancer treatment agent etoposide. Cell death was through a robust induction of apoptosis even more effectively than etoposide, a well‐known apoptosis inducing agent.  相似文献   
8.
Signal peptidase functions to cleave signal peptides from preproteins at the cell membrane. It has a substrate specificity for small uncharged residues at -1 (P1) and aliphatic residues at the -3 (P3) position. Previously, we have reported that certain alterations of the Ile-144 and Ile-86 residues in Escherichia coli signal peptidase I (SPase) can change the specificity such that signal peptidase is able to cleave pro-OmpA nuclease A in vitro after phenylalanine or asparagine residues at the -1 position (Karla, A., Lively, M. O., Paetzel, M. and Dalbey, R. (2005) J. Biol. Chem. 280, 6731-6741). In this study, screening of a fluorescence resonance energy transfer-based peptide library revealed that the I144A, I144C, and I144C/I86T SPase mutants have a more relaxed substrate specificity at the -3 position, in comparison to the wild-type SPase. The double mutant tolerated arginine, glutamine, and tyrosine residues at the -3 position of the substrate. The altered specificity of the I144C/I86T mutant was confirmed by in vivo processing of pre-beta-lactamase containing non-canonical arginine and glutamine residues at the -3 position. This work establishes Ile-144 and Ile-86 as key P3 substrate specificity determinants for signal peptidase I and demonstrates the power of the fluorescence resonance energy transfer-based peptide library approach in defining the substrate specificity of proteases.  相似文献   
9.
10.
The nonpathogenic hrcC mutant of Xanthomonas campestris pv. vesicatoria 85-10::hrpA22 multiplied in pepper leaves if it was mixed with pathogenic strains of X. campestris pv. vesicatoria. Reactions to the mutant alone included localized deposition of phenolics and callose in papillae, and alterations to the plant cell wall leading to increased electron density. Electron microscopy showed that the localized responses were suppressed in the presence of wild-type bacteria but other wall changes occurred at some sites, involving cellulose-rich ingrowth of the wall. Multiplication of the hrp mutant in mixed inocula was confirmed by tagging 85-10::hrpA22 using immunocytochemical location of AvrBs3 expressed from the plasmid pD36. Elicitors of callose deposition and other wall changes were isolated from the hrcC mutant. Activity in extracts of bacteria was attributed to the presence of high molecular weight lipopolysaccharides (LPS). Wild-type X. campestris pv. vesicatoria suppressed induction of structural changes caused by purified LPS. Results obtained suggest that effector proteins produced by phytopathogenic bacteria and delivered by the type III secretion system may have a key role in suppressing the basal defense responses activated by bacterial LPS, which lead to restricted multiplication of nonpathogens such as hrp mutants.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号