首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   1篇
  2017年   1篇
  2013年   1篇
  2012年   4篇
  2011年   1篇
  2009年   2篇
  2007年   1篇
排序方式: 共有10条查询结果,搜索用时 15 毫秒
1
1.
2.
Immunological, cellular and molecular events in typhoid fever   总被引:1,自引:0,他引:1  
Salmonella, a facultative intracellular Gram-negative bacterium infects a wide range of hosts causing several gastrointestinal diseases and enteric fever in humans and certain animal species. Typhoid caused by Salmonella typhi remains a major health concern in India and worldwide. Also, with emergence of multidrug resistant strains, Salmonella has acquired increased virulence, communicability and survivability, resulting in increased morbidity and mortality. Though a number of vaccines for typhoid are available against S. typhi (or also against S. typhimurium), these have certain undesirable side effects and the search for new immunogens suitable for vaccine formulation is still continuing. The immune response to primary Salmonella infection involves both humoral and cell-mediated responses. The protective immunity against Salmonella depends on host- parasite interaction, however; the detailed mechanism of virulence, innate resistance and susceptibility of host remains unclear. This review focuses on the molecular, immunological and cellular mechanisms of pathogenesis of Salmonella infection to provide an insight to counteract bacterial infections and allow a better understanding of its clinical manifestations. It also reviews better technological possibilities combined with increased knowledge in related fields such as immunology and molecular biology and allow for new vaccination strategies. Some new approaches such as subunit and nucleic acid vaccines and recombinant antigen which are becoming increasingly important for the development of potential vaccines have also been discussed. A significant progress has been made in our understanding of Salmonella pathogenesis. Despite these efforts, however, many challenges exist, especially for investigators who aim to understand how the pathogenic mechanisms operating in vitro apply to in vivo model systems. However, unyielding work and collaborations between Salmonella researchers and clinicians worldwide have made significant contributions to understanding the interaction between virulence determinants and immunity required to stop the spread of this pathogen.  相似文献   
3.
Increased levels of oxidatively induced DNA damage have been reported in various cases of human pathogenesis like age-related and chronic diseases. Advances in experimental carcinogenesis associate high oxidative stress with genome instability and oncogenic transformation. Cancer biomarkers are helpful for early tumor diagnostics, prediction of tumor development, and analysis of individual tumors' response to therapy as well as recurrence. The repair resistant oxidatively induced clustered DNA lesions (OCDLs) could serve as a common indicator of oxidative stress in human malignant cells or tissues. To test this hypothesis, we assessed the levels of endogenous OCDLs in several human tumor and adjacent normal tissues from patients with liver, ovary, kidney, breast and colon cancer. These tumor tissues have already been shown to accumulate higher endogenous levels of gamma-H2AX foci. For the detection of clustered DNA lesions we used the human repair enzymes APE1, OGG1 and NTH1 as well as the Escherichia coli homologue Endonuclease III. In the majority of cases we detected higher levels of OCDLs in tumor vs. normal tissues but not always with a statistically significant difference and not with uniform tissue dependence. These data suggest for the first time the importance of endogenous non-DSB clusters in human cancer and their potential use as cancer biomarkers.  相似文献   
4.
Emerging data suggest that primary dysfunction in the tumor microenvironment is crucial for carcinogenesis. These recent findings make a compelling case for targeting the milieu for cancer chemoprevention as well as therapy. The stroma is an integral part of its physiology, and functionally, one cannot totally dissociate the tumor surrounding from the tumor cells. A thorough understanding of the tumor and stroma will aid us in developing new treatment targets. In this review, we shed light at the key aspects of the carcinogenic process and how oxidative stress and inflammation contribute to this process. We dissect the connection between metastasis and oxidative stress and focus on the key players in the tumor microenvironment that leads to inflammation, oxidative stress and DNA damage. Moreover, we consider the role of inflammation in disease, specifically cancer and metastasis. Finally, we discuss the potential applications in prognosis and cancer treatment.  相似文献   
5.
The AKT pathway is a fundamental signaling pathway that mediates multiple cellular processes, such as cell proliferation and survival, angiogenesis, and glucose metabolism. We recently reported that the immunophilin FKBP51 is a scaffolding protein that can enhance PHLPP‐AKT interaction and facilitate PHLPP‐mediated dephosphorylation of AKT at Ser473, negatively regulating AKT activation. However, the regulation of FKBP51‐PHLPP‐AKT pathway remains unclear. Here we report that a deubiquitinase, USP49, is a new regulator of the AKT pathway. Mechanistically, USP49 deubiquitinates and stabilizes FKBP51, which in turn enhances PHLPP's capability to dephosphorylate AKT. Furthermore, USP49 inhibited pancreatic cancer cell proliferation and enhanced cellular response to gemcitabine in a FKBP51‐AKT‐dependent manner. Clinically, decreased expression of USP49 in patients with pancreatic cancer was associated with decreased FKBP51 expression and increased AKT phosphorylation. Overall, our findings establish USP49 as a novel regulator of AKT pathway with a critical role in tumorigenesis and chemo‐response in pancreatic cancer.  相似文献   
6.
Hyper-activation of DNA repair pathways can enable tumor cells to survive DNA damage. Therefore, targeting specific DNA repair pathways might prove efficacious for cancer therapy. The advent of personalized therapy necessitates novel biomarkers to assess tumor response to therapy. Biological indicators are vital in the field of cancer research and treatment. The focus of this review is on the DNA repair machinery as an emerging target for enhancement of therapy. Additionally, DNA damage and repair biomarkers for prognosis in different types of cancer will be discussed. The application of biomarkers to assess tumor response to therapy based on targeting DNA repair pathways can potentially improve patient quality of life and aid in treatment design.  相似文献   
7.
Molecular characterization of 19 advanced cultivars and landraces of brinjal was carried out using RAPD and ISSR markers. Twenty-nine RAPD primers generated a total of 240 amplified fragments, while 23 anchored and non-anchored ISSR primers produced 299 fragments. Of these, 66 (27.5%) RAPD and 56 (18.73%) ISSR fragments were polymorphic. All the cultivars could be distinguished based on RAPD and/or ISSR profiles. A set of two RAPD primers, OPW 11 and OPX 07, was adequate to distinguish all the 19 cultivars. On the other hand, a minimum of ten ISSR primers were required to achieve the same result. Eleven cultivars could be identified by the unique presence or absence of one to four markers. The correlation between primer Rp and the number of cultivars distinguished by RAPD was r = 0.873, while that for ISSR it was r = 0.327. The correlation between PIC of primer and the number of cultivars distinguished was r = 0.324 for RAPD, while for ISSR primers it was r = ? 0.066. The probability of chance identity between two cultivars for RAPD and ISSR markers was calculated as 8.94×10?4 and 2.25×10?2, respectively. The average Jaccard’s similarity coefficient between cultivars based on combined RAPD and ISSR data was estimated to be 0.919. The UPGMA analysis grouped the cultivars into three main clusters with significant bootstrap support. While the cultivars bred at Indian Agricultural Research Institute, New Delhi formed one sub-cluster; others did not show a prominent region-based clustering.  相似文献   
8.
Few therapeutic options exist for the highly aggressive triple negative breast cancers (TNBCs). In this study, we report that a contextual synthetic lethality can be achieved both in vitro and in vivo with combined EGFR and PARP inhibition with lapatinib and ABT-888, respectively. The mechanism involves a transient DNA double strand break repair deficit induced by lapatinib and subsequent activation of the intrinsic pathway of apoptosis. Further dissection of the mechanism reveals that EGFR and BRCA1 can be found in the same protein complex, which is reduced by lapatinib. Interestingly, lapatinib also increases cytosolic BRCA1 and EGFR, away from their nuclear DNA repair substrates. Taken together, these results reveal a novel regulation of homologous recombination repair involving EGFR and BRCA1 interaction and alteration of subcellular localization. Additionally, a contextual synthetic lethality may exist between combined EGFR and PARP inhibitors.  相似文献   
9.
Overexpression of the epidermal growth factor receptor (EGFR) is a hallmark of head and neck cancers and confers increased resistance and inferior survival rates. Despite targeted agents against EGFR, such as cetuximab (C225), almost half of treated patients fail this therapy, necessitating novel therapeutic strategies. Poly (ADP-Ribose) polymerase (PARP) inhibitors (PARPi) have gained recent attention due to their unique selectivity in killing tumors with defective DNA repair. In this study, we demonstrate that C225 enhances cytotoxicity with the PARPi ABT-888 in UM-SCC1, UM-SCC6, and FaDu head and neck cancer cells. The mechanism of increased susceptibility to C225 and PARPi involves C225-mediated reduction of non-homologous end-joining (NHEJ)- and homologous recombination (HR)-mediated DNA double strand break (DSB) repair, the subsequent persistence of DNA damage, and activation of the intrinsic apoptotic pathway. By generating a DSB repair deficiency, C225 can render head and neck tumor cells susceptible to PARP inhibition. The combination of C225 and the PARPi ABT-888 can thus be an innovative treatment strategy to potentially improve outcomes in head and neck cancer patients. Furthermore, this strategy may also be feasible for other EGFR overexpressing tumors, including lung and brain cancers.  相似文献   
10.
A number of drugs target the DNA repair pathways and induce cell kill by creating DNA damage. Thus, processes to directly measure DNA damage have been extensively evaluated. Traditional methods are time consuming, expensive, resource intensive and require replicating cells. In contrast, the comet assay, a single cell gel electrophoresis assay, is a faster, non-invasive, inexpensive, direct and sensitive measure of DNA damage and repair. All forms of DNA damage as well as DNA repair can be visualized at the single cell level using this powerful technique.The principle underlying the comet assay is that intact DNA is highly ordered whereas DNA damage disrupts this organization. The damaged DNA seeps into the agarose matrix and when subjected to an electric field, the negatively charged DNA migrates towards the cathode which is positively charged. The large undamaged DNA strands are not able to migrate far from the nucleus. DNA damage creates smaller DNA fragments which travel farther than the intact DNA. Comet Assay, an image analysis software, measures and compares the overall fluorescent intensity of the DNA in the nucleus with DNA that has migrated out of the nucleus. Fluorescent signal from the migrated DNA is proportional to DNA damage. Longer brighter DNA tail signifies increased DNA damage. Some of the parameters that are measured are tail moment which is a measure of both the amount of DNA and distribution of DNA in the tail, tail length and percentage of DNA in the tail. This assay allows to measure DNA repair as well since resolution of DNA damage signifies repair has taken place. The limit of sensitivity is approximately 50 strand breaks per diploid mammalian cell 1,2. Cells treated with any DNA damaging agents, such as etoposide, may be used as a positive control. Thus the comet assay is a quick and effective procedure to measure DNA damage.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号