首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   67篇
  免费   5篇
  2014年   2篇
  2013年   1篇
  2012年   4篇
  2011年   2篇
  2009年   1篇
  2008年   3篇
  2007年   1篇
  2006年   3篇
  2005年   4篇
  2003年   2篇
  2001年   3篇
  2000年   5篇
  1999年   2篇
  1998年   1篇
  1995年   1篇
  1994年   4篇
  1993年   2篇
  1992年   1篇
  1991年   3篇
  1990年   2篇
  1989年   4篇
  1988年   4篇
  1987年   3篇
  1986年   3篇
  1985年   3篇
  1984年   3篇
  1978年   1篇
  1941年   1篇
  1939年   2篇
  1934年   1篇
排序方式: 共有72条查询结果,搜索用时 15 毫秒
1.
Using our transistor model of the lung during forced expiration (J. Appl. Physiol. 62: 2013-2025, 1987), we recently predicted that 1) axially arranged choke points can exist simultaneously during forced expiration with sufficient effort, and 2) overall maximal expiratory flow may be relatively insensitive to nonuniform airways obstruction because of flow interdependence between parallel upstream branches. We tested these hypotheses in excised central airways obtained from five canine lungs. Steady expiratory flow was induced by supplying constant upstream pressure (Pupstream = 0-16 cmH2O) to the bronchi of both lungs while lowering pressure at the tracheal airway opening (16 to -140 cmH2O). Intra-airway pressure profiles obtained during steady maximal expiratory flow disclosed a single choke point in the midtrachea when Pupstream was high (2-16 cmH2O). However, when Pupstream was low (0 cmH2O), two choke sites were evident: the tracheal site persisted, but another upstream choke point (main carina or both main bronchi) was added. Flow interdependence was studied by comparing maximal expiratory flow through each lung before and after introduction of a unilateral external resistance upstream of the bronchi of one lung. When this unilateral resistance was added, ipsilateral flow always fell, but changes in flow through the contralateral lung depended on the site of the most upstream choke. When a single choke existed in the trachea, addition of the external resistance increased contralateral flow by 38 +/- 28% (SD, P less than 0.003). In contrast, when the most upstream choke existed at the main carina or in the bronchi, addition of the external resistance had no effect on contralateral maximal expiratory flow.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   
2.
Adequate CO2 elimination and normal arterial PCO2 levels can be maintained in dogs during apnea by delivering a continuous flow of inspired gas at high flow rate (1-3 l.min-1.kg-1) through tubes placed in the main-stem bronchi. However, during constant-flow ventilation (CFV) the mean alveolar pressure is increased, causing increased lung volume despite low pressures in the trachea. We hypothesized that the increased dynamic alveolar pressures during CFV were due to momentum transfer from the high-velocity jet stream to resident gas in the lung. To test this, we simulated CFV in straight tubes and in a branched airway model to determine whether changes in gas flow rate (V), gas density (rho), and tube diameter (D) altered the pressure difference (delta P) between alveoli and airway opening in a manner consistent with that predicted by conservation of momentum. Momentum analysis predicts that delta P should vary with V2, whereas measurements yielded a dependence of V1.69 in branched tubes and V1.9 in straight tubes. Substitution of heliox (80% He-20% O2) for air significantly reduced lung hyperinflation during CFV. As predicted by momentum transfer, delta P varied with rho 1.0. Momentum analysis also predicts that delta P should vary with D-2.0, whereas measurements indicated a dependence on D-2.02. The influence of V and rho on depth of penetration of the jet down the airway was explored in a straight tube model by varying the flow rate and gas used. The influence of geometry on penetration was measured by changing the ratio of jet-to-airway tube diameters.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   
3.
We assessed the relative changes in airways and lung tissue with bronchoconstriction, and the changes in each during and following a deep inhalation (DI). We partitioned pulmonary resistance (RL) into airway (Raw) and tissue (Vtis) components using alveolar capsules in 10 anesthetized, paralyzed, and open-chested dogs ventilated sinusoidally with 350-ml breaths at 1 Hz. We made measurements before and during bronchoconstriction induced by vagal stimulation or inhalation of histamine or prostaglandin F2 alpha (PGF2 alpha), each of which decreased dynamic compliance by approximately 40%. With histamine and PGF2 alpha the rise in RL was predominantly due to Vtis. With vagal stimulation there was a relatively greater increase in Raw than Vtis. At higher lung volumes, Vtis increases offset falls in Raw, producing higher RL at these volumes before and during constriction with PGF2 alpha and histamine. During constriction with vagal stimulation, the fall in Raw with inflation overrode the rise in Vtis, resulting in a lower RL at the higher compared with the lower lung volume. The changes seen after a DI in the control and constricted states were due to alterations in tissue properties, both viscous and elastic. However, the relative hysteresis of the airways and parenchyma were equal, since Raw, our index of airway size, was unchanged after a DI.  相似文献   
4.
We tested the hypothesis that tachykinins mediate hyperpnea-induced bronchoconstriction (HIB) in 28 guinea pigs. Stimulus-response curves to increasing minute ventilation with dry gas were generated in animals depleted of tachykinins by capsaicin pretreatment and in animals pretreated with phosphoramidon, a neutral metalloendopeptidase inhibitor. Sixteen anesthetized guinea pigs received capsaicin (50 mg/kg sc) after aminophylline (10 mg/kg ip) and terbutaline (0.1 mg/kg sc). An additional 12 animals received saline (1 ml sc) instead of capsaicin. One week later, all animals were anesthetized, given propranolol (1 mg/kg iv), and mechanically ventilated (6 ml/kg, 60 breaths/min, 50% O2 in air fully water saturated). Phosphoramidon (0.5 mg iv) was administered to five of the noncapsaicin-treated guinea pigs. Eucapnic dry gas (95% O2-5% CO2) hyperpnea "challenges" were performed by increasing the tidal volume (2-6 ml) and frequency (150 breaths/min) for 5 min. Capsaicin-pretreated animals showed marked attenuation in HIB, with a rightward shift of the stimulus-response curve compared with controls; the estimated tidal volume required to elicit a twofold increase in respiratory system resistance (ES200) was 5.0 ml for capsaicin-pretreated animals vs. 3.7 ml for controls (P less than 0.03). Phosphoramidon-treated animals were more reactive to dry gas hyperpnea compared with control (ES200 = 2.6 ml; P less than 0.0001). Methacholine dose-response curves (10(-11) to 10(-7) mol iv) obtained at the conclusion of the experiments were similar among capsaicin, phosphoramidon, and control groups. These findings implicate tachykinin release as an important mechanism of HIB in guinea pigs.  相似文献   
5.
Increasing minute ventilation of dry gas shifts the principal burden of respiratory heat and water losses from more proximal airway to airways farther into the lung. If these local thermal transfers determine the local stimulus for bronchoconstriction, then increasing minute ventilation of dry gas might also extend the zone of airway narrowing farther into the lung during hyperpnea-induced bronchoconstriction (HIB). We tested this hypothesis by comparing tantalum bronchograms in tracheostomized guinea pigs before and during bronchoconstriction induced by dry gas hyperpnea, intravenous methacholine, and intravenous capsaicin. In eight animals subjected to 5 min of dry gas isocapnic hyperpnea [tidal volume (VT) = 2-5 ml, 150 breaths/min], there was little change in the diameter of the trachea or the main stem bronchi up to 0.75 cm past the main carina (zone 1). In contrast, bronchi from 0.75 to 1.50 cm past the main carina (zone 2) narrowed progressively at all minute ventilations greater than or equal to 300 ml/min (VT = 2 ml). More distal bronchi (1.50-3.10 cm past the main carina; zone 3) did not narrow significantly until minute ventilation was raised to 450 ml/min (VT = 3 ml). The estimated VT during hyperpnea needed to elicit a 50% reduction in airway diameter was significantly higher in zone 3 bronchi [4.3 +/- 0.8 (SD) ml] than in zone 2 bronchi (3.5 +/- 1.1 ml, P less than 0.012).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   
6.
We tested the hypothesis that decreasing nasal air volume (i.e., increasing nasal turbinate blood volume) improves nasal air conditioning. We performed a randomized, two-way crossover study on the conditioning capacity of the nose in six healthy subjects in the supine and upright position. Cold, dry air (CDA) was delivered to the nose via a nasal mask, and the temperature and humidity of air were measured before it entered and after it exited the nasal cavity. The total water gradient (TWG) across the nose was calculated and represents the nasal conditioning capacity. Nasal volume decreased significantly from baseline without changing the mucosal temperature when subjects were placed in the supine position (P < 0.01). TWG in supine position was significantly lower than that in upright position (P < 0.001). In the supine position, nasal mucosal temperature after CDA exposure was significantly lower than that in upright position (P < 0.01). Our data show that placing subjects in the supine position decreased the ability of the nose to condition CDA compared with the upright position, in contrast to our hypothesis.  相似文献   
7.
8.
9.
Sensory neuropeptides and airway function.   总被引:10,自引:0,他引:10  
Sensory nerves synthesize tachykinins and calcitonin-gene related peptide and package these neuropeptides together in synaptic vesicles. Stimulation of these C-fibers by a range of chemical and physical factors results in afferent neuronal conduction that elicits central parasympathetic reflexes and in antidromic conduction that results in local release of neuropeptides through the axon reflex. In the airways, sensory neuropeptides act on bronchial smooth muscle, the mucosal vasculature, and submucosal glands to promote airflow obstruction, hyperemia, microvascular hyperpermeability, and mucus hypersecretion. In addition, tachykinins potentiate cholinergic neurotransmission. Proinflammatory effects of these peptides also promote the recruitment, adherence, and activation of granulocytes that may further exacerbate neurogenic inflammation (i.e., neuropeptide-induced plasma extravasation and vasodilation). Enzymatic degradation limits the physiological effects of tachykinins but may be impaired by respiratory infection or other factors. Given their sensitivity to noxious compounds and physical stimuli and their potent effects on airway function, it is possible that neuropeptide-containing sensory nerves play an important role in mediating airway responses in human disease. Supporting this view are the striking phenomenological similarities between hyperpnea-induced bronchoconstriction (HIB) in guinea pigs and HIB in patients with exercise-induced asthma. Endogenous tachykinins released from airway sensory nerves mediate HIB in guinea pigs and also cause hyperpnea-induced bronchovascular hyperpermeability in these animals. On the basis of these observations, it is reasonable to speculate that sensory neuropeptides participate in the pathogenesis of hyperpnea-induced airflow obstruction in human asthmatic subjects as well.  相似文献   
10.
We hypothesized that differences in actin filament length could influence force fluctuation-induced relengthening (FFIR) of contracted airway smooth muscle and tested this hypothesis as follows. One-hundred micromolar ACh-stimulated canine tracheal smooth muscle (TSM) strips set at optimal reference length (Lref) were allowed to shorten against 32% maximal isometric force (Fmax) steady preload, after which force oscillations of +/-16% Fmax were superimposed. Strips relengthened during force oscillations. We measured hysteresivity and calculated FFIR as the difference between muscle length before and after 20-min imposed force oscillations. Strips were relaxed by ACh removal and treated for 1 h with 30 nM latrunculin B (sequesters G-actin and promotes depolymerization) or 500 nM jasplakinolide (stabilizes actin filaments and opposes depolymerization). A second isotonic contraction protocol was then performed; FFIR and hysteresivity were again measured. Latrunculin B increased FFIR by 92.2 +/- 27.6% Lref and hysteresivity by 31.8 +/- 13.5% vs. pretreatment values. In contrast, jasplakinolide had little influence on relengthening by itself; neither FFIR nor hysteresivity was significantly affected. However, when jasplakinolide-treated tissues were then incubated with latrunculin B in the continued presence of jasplakinolide for 1 more h and a third contraction protocol performed, latrunculin B no longer substantially enhanced TSM relengthening. In TSM treated with latrunculin B + jasplakinolide, FFIR increased by only 3.03 +/- 5.2% Lref and hysteresivity by 4.14 +/- 4.9% compared with its first (pre-jasplakinolide or latrunculin B) value. These results suggest that actin filament length, in part, determines the relengthening of contracted airway smooth muscle.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号