首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   126篇
  免费   4篇
  2018年   2篇
  2016年   2篇
  2015年   1篇
  2014年   1篇
  2013年   1篇
  2012年   4篇
  2011年   2篇
  2010年   4篇
  2009年   1篇
  2008年   3篇
  2007年   1篇
  2006年   2篇
  2005年   2篇
  2004年   3篇
  2003年   2篇
  2002年   4篇
  2001年   3篇
  2000年   3篇
  1999年   2篇
  1998年   6篇
  1997年   4篇
  1996年   3篇
  1995年   1篇
  1994年   2篇
  1993年   2篇
  1992年   4篇
  1991年   2篇
  1990年   10篇
  1989年   7篇
  1988年   4篇
  1987年   6篇
  1986年   5篇
  1985年   4篇
  1984年   1篇
  1983年   5篇
  1982年   5篇
  1980年   3篇
  1979年   3篇
  1978年   3篇
  1977年   3篇
  1975年   1篇
  1974年   1篇
  1973年   1篇
  1970年   1篇
排序方式: 共有130条查询结果,搜索用时 32 毫秒
1.
Rat liver pyruvate kinase is phosphorylated by calcium/calmodulin-dependent protein kinase II at serine and threonine residues in a 3-4 kDa CNBr fragment located near the amino terminus. The two sites of phosphorylation were separated by reverse-phase HPLC of a thermolysin digest. Sequence analysis established the sites of phosphorylation as follows: Leu-Arg-Arg-Ala-Ser(PO4)-Val-Ala-Gln-Leu-Thr(PO4)-Gln-Glu.  相似文献   
2.
Studies have been initiated to determine the hormonal regulation of glycogen synthase in rabbit skeletal muscle. It was found that glycogen synthase purified from control animals was quite highly phosphorylated (2.35 mol phosphate/mol synthase subunit) with 40% of the phosphate in the trypsin-sensitive or COOH-terminal domain, and 60% in the trypsin-insensitive or NH2-terminal domain. The phosphorylation state of synthase was elevated (3.9 mol/mol) by epinephrine injection and in the diabetic condition. With epinephrine, about 76% of the additional phosphate was incorporated in the trypsin-sensitive domain, which strongly supports the contention that this hormone acts through the cyclic AMP (cAMP)-dependent protein kinase. In the synthase purified from diabetic rabbits, 90% of the additional phosphate was in the trypsin-insensitive domain. Insulin treatment of the diabetics resulted in specific dephosphorylation of the trypsin-insensitive domain. These results indicate that in this system insulin is not acting by inhibition of the cAMP-dependent protein kinase.  相似文献   
3.
Okadaic acid, a potent inhibitor of Type 1 and Type 2A protein phosphatases, was used to investigate the mechanism of insulin action on membrane-bound low Km cAMP phosphodiesterase in rat adipocytes. Upon incubation of cells with 1 microM okadaic acid for 20 min, phosphodiesterase was stimulated 3.7- to 3.9-fold. This stimulation was larger than that elicited by insulin (2.5- to 3.0-fold). Although okadaic acid enhanced the effect of insulin, the maximum effects of the two agents were not additive. When cells were pretreated with 1-(5-isoquinolinylsulfonyl)-2-methylpiperazine (H-7), the level of phosphodiesterase stimulation by okadaic acid was rendered smaller, similar to that attained by insulin. In cells that had been treated with 2 mM KCN, okadaic acid (like insulin) failed to stimulate phosphodiesterase, suggesting that ATP was essential. Also, as reported previously, the effect of insulin on phosphodiesterase was reversed upon exposure of hormone-treated cells to KCN. This deactivation of previously-stimulated phosphodiesterase was blocked by okadaic acid, but not by insulin. The above KCN experiments were carried out with cells in which A-kinase activity was minimized by pretreatment with H-7. Okadaic acid mildly stimulated basal glucose transport and, at the same time, strongly inhibited the action of insulin thereon. It is suggested that insulin may stimulate phosphodiesterase by promoting its phosphorylation and that the hormonal effect may be reversed by a protein phosphatase which is sensitive to okadaic acid. The hypothetical protein kinase thought to be involved in the insulin-dependent stimulation of phosphodiesterase appears to be more H-7-resistant than A-kinase.  相似文献   
4.
5.
The Ca2+(calmodulin (CaM))-dependent protein kinase II, purified from either rabbit liver or rat brain, was preincubated under conditions that are known to promote its autophosphorylation. When kinase activity was assayed after this preincubation, it was observed that excess EGTA could block no more than 40-60% of the total Ca2+- and CaM-dependent activity compared to 95% inhibition by EGTA prior to preincubation. In the EGTA assay, free Ca2+ was calculated to be less than 1 nM; therefore, this activity was designated Ca2+-independent activity. Formation of this Ca2+-independent form of the kinase was shown to be associated with autophosphorylation based on the following observations: (a) it required the presence of Ca2+, CaM, and ATP; (b) the ATP analogs adenylyl imidodiphosphate and adenylyl methylenediphosphate could not substitute for ATP; (c) generation of the independent form was associated with incorporation of phosphate into the kinase; and (d) addition of protein phosphatase partially dephosphorylated the kinase and restored its Ca2+ dependence. This phenomenon may be of physiological importance because it would prolong the effects of extracellular signals that only transiently increase the intracellular Ca2+ level.  相似文献   
6.
7.
Purified rat brain Ca2+/calmodulin-dependent protein kinase II (CaM-kinase II) is stimulated by brain gangliosides to a level of about 30% the activity obtained in the presence of Ca2+/calmodulin (CaM). Of the various gangliosides tested, GT1b was the most potent, giving half-maximal activation at 25 microM. Gangliosides GD1a and GM1 also gave activation, but asialo-GM1 was without effect. Activation was rapid and did not require calcium. The same gangliosides also stimulated the autophosphorylation of CaM-kinase II on serine residues, but did not produce the Ca2+-independent form of the kinase. Ganglioside stimulation of CaM-kinase II was also present in rat brain synaptic membrane fractions. Higher concentrations (125-250 microM) of GT1b, GD1a, and GM1 also inhibited CaM-kinase II activity. This inhibition appears to be substrate-directed, as the extent of inhibition is very dependent on the substrate used. The molecular mechanism of the stimulatory effect of gangliosides was further investigated using a synthetic peptide (CaMK 281-309), which contains the CaM-binding, inhibitory, and autophosphorylation domains of CaM-kinase II. Using purified brain CaM-kinase II in which these regulatory domains were removed by limited proteolysis. CaMK 281-309 strongly inhibited kinase activity (IC50 = 0.2 microM). GT1b completely reversed this inhibition, but did not stimulate phosphorylation of the peptide on threonine-286. These results demonstrate that GT1b can partially mimic the effects of Ca2+/CaM on native CaM-kinase II and on peptide CaMK 281-309.  相似文献   
8.
The site in calcineurin, the Ca2+/calmodulin (CaM)-dependent protein phosphatase, which is phosphorylated by Ca2+/CaM-dependent protein kinase II (CaM-kinase II) has been identified. Analyses of 32P release from tryptic and cyanogen bromide peptides derived from [32P]calcineurin plus direct sequence determination established the site as -Arg-Val-Phe-Ser(PO4)-Val-Leu-Arg-, which conformed to the consensus phosphorylation sequence for CaM-kinase II (Arg-X-X-Ser/Thr-). This phosphorylation site is located at the C-terminal boundary of the putative CaM-binding domain in calcinerin (Kincaid, R. L., Nightingale, M. S., and Martin, B. M. (1988) Proc. Natl. Acad. Sci. U. S. A. 85, 8983-8987), thereby accounting for the observed inhibition of this phosphorylation when Ca2+/CaM is bound to calcineurin. Since the phosphorylation site sequence also contains elements of the specificity determinants for Ca2+/phospholipid-dependent protein kinase (protein kinase C) (basic residues both N-terminal and C-terminal to Ser/Thr), we tested calcineurin as a substrate for protein kinase C. Protein kinase C catalyzed rapid stoichiometric phosphorylation, and the characteristics of the reaction were the same as with CaM-kinase II: 1) the phosphorylation was blocked by binding of Ca2+/CaM to calcineurin; 2) phosphorylation partially inactivated calcineurin by increasing the Km (from 9.9 +/- 1.1 to 17.5 +/- 1.1 microM 32P-labeled myosin light chain); and 3) [32P]calcineurin exhibited very slow autodephosphorylation but was rapidly dephosphorylated by protein phosphatase IIA. Tryptic and thermolytic 32P-peptide mapping and sequential phosphoamino acid sequence analysis confirmed that protein kinase C and CaM-kinase II phosphorylated the same site.  相似文献   
9.
10.
One of the most active areas of neurobiology research concerns mechanisms involved in paradigms of synaptic plasticity. A popular model for cellular leaning and memory is long term potentiation (LTP) in hippocamus. LTP requires postsynaptic influx of Ca2+ which triggers multiple biochemical pathways resulting in pre- and postsynaptic mechanisms enhancing long term synaptic efficiency. This article focuses on an acute postsynaptic Mechanism that can enhance responsiveness of glutamate receptors. Evidence is presented that calcium/calmodulin/dependent protein kinase II, the major potsynaptic density protein at excitatory glutaminergic synapses, can phosphorylate glutamate receptors and enhance ion current flowing through them. 1994 John Wiley & Sons, Inc.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号