首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   84篇
  免费   3篇
  2023年   1篇
  2022年   1篇
  2021年   3篇
  2020年   1篇
  2019年   2篇
  2018年   5篇
  2016年   5篇
  2015年   9篇
  2014年   1篇
  2013年   7篇
  2012年   12篇
  2011年   8篇
  2010年   4篇
  2009年   4篇
  2008年   5篇
  2007年   2篇
  2006年   6篇
  2005年   5篇
  2004年   3篇
  2003年   1篇
  2001年   1篇
  1992年   1篇
排序方式: 共有87条查询结果,搜索用时 19 毫秒
1.
2.
Molecular Biology Reports - RUNX1T1 is extensively studied in the context of AML1-RUNX1T1 fusion protein in acute myeloid leukemia. Little is known about the function of RUNX1T1 itself, although...  相似文献   
3.
Telomeres are chromosome end structures and are essential for maintenance of genome stability. Highly repetitive telomere sequences appear to be susceptible to oxidative stress-induced damage. Oxidation may therefore have a severe impact on telomere integrity and function. A wide spectrum of oxidative pyrimidine-derivatives has been reported, including thymine glycol (Tg), that are primarily removed by a DNA glycosylase, Endonuclease III-like protein 1 (Nth1). Here, we investigate the effect of Nth1 deficiency on telomere integrity in mice. Nth1 null (Nth1−/−) mouse tissues and primary MEFs harbor higher levels of Endonuclease III-sensitive DNA lesions at telomeric repeats, in comparison to a non-telomeric locus. Furthermore, oxidative DNA damage induced by acute exposure to an oxidant is repaired slowly at telomeres in Nth1−/− MEFs. Although telomere length is not affected in the hematopoietic tissues of Nth1−/− adult mice, telomeres suffer from attrition and increased recombination and DNA damage foci formation in Nth1−/− bone marrow cells that are stimulated ex vivo in the presence of 20% oxygen. Nth1 deficiency also enhances telomere fragility in mice. Lastly, in a telomerase null background, Nth1−/− bone marrow cells undergo severe telomere loss at some chromosome ends and cell apoptosis upon replicative stress. These results suggest that Nth1 plays an important role in telomere maintenance and base repair against oxidative stress-induced base modifications. The fact that telomerase deficiency can exacerbate telomere shortening in Nth1 deficient mouse cells supports that base excision repair cooperates with telomerase to maintain telomere integrity.  相似文献   
4.
Beta-estradiol (17beta-E2) augments VEGF-A expression in various estrogen targeted organs and cells including breast tumor derived cell lines, via an ER-alpha mediated pathway. Ironically, 17beta-E2 is able to regulate some genes via ER-alpha independent pathways. In the present study, we sought to determine whether 17beta-E2 can modulate VEGF-A expression in absence of ER-alpha, and therefore, three different cell lines including ER-alpha+ MCF-7, and ER-alpha SKBR-3 and HMEC were used for this study. The present study demonstrates that 17beta-E2 also induces VEGF-A mRNA expression in ER-negative SKBR-3 breast tumor cells in a manner similar to that observed in ER-positive MCF-7 cells. Blocking the induced-expression by antiestrogen ICI 182,780 indicates the induction pathway is ER dependent. While ER-alpha mRNA is absent in both HMEC and SKBR-3 cells, the impact of estrogen was found only in SKBR-3 cells, suggesting the existence of an analogue to ER-alpha or overlapping signal in these cells. Consistent with this suggestion, the present studies demonstrate the existence of an ER-alpha(var2) protein in MCF-7 and in SKBR-3 cells. This variant is predominantly localized in the nuclei of SKBR-3 cells. Importantly, specific binding of 17beta-E2 by these cells suggest the ER-alpha(var2) may act as active receptor in SKBR-3 cells.  相似文献   
5.
The alternative sigma factor RpoN is a unique regulator found among bacteria. It controls numerous processes that range from basic metabolism to more complex functions such as motility and nitrogen fixation. Our current understanding of RpoN function is largely derived from studies on prototypical bacteria such as Escherichia coli. Bacillus subtilis and Pseudomonas putida. Although the extent and necessity of RpoN-dependent functions differ radically between these model organisms, each bacterium depends on a single chromosomal rpoN gene to meet the cellular demands of RpoN regulation. The bacterium Ralstonia solanacearum is often recognized for being the causative agent of wilt disease in crops, including banana, peanut and potato. However, this plant pathogen is also one of the few bacterial species whose genome possesses dual rpoN genes. To determine if the rpoN genes in this bacterium are genetically redundant and interchangeable, we constructed and characterized ΔrpoN1, ΔrpoN2 and ΔrpoN1 ΔrpoN2 mutants of R. solanacearum GMI1000. It was found that growth on a small range of metabolites, including dicarboxylates, ethanol, nitrate, ornithine, proline and xanthine, were dependent on only the rpoN1 gene. Furthermore, the rpoN1 gene was required for wilt disease on tomato whereas rpoN2 had no observable role in virulence or metabolism in R. solanacearum GMI1000. Interestingly, plasmid-based expression of rpoN2 did not fully rescue the metabolic deficiencies of the ΔrpoN1 mutants; full recovery was specific to rpoN1. In comparison, only rpoN2 was able to genetically complement a ΔrpoN E. coli mutant. These results demonstrate that the RpoN1 and RpoN2 proteins are not functionally equivalent or interchangeable in R. solanacearum GMI1000.  相似文献   
6.
7.
Successful recall Ab responses require recruitment of quiescent memory B cells to secondary lymphoid organs. However, the cellular dynamics of memory cells responding to local antigenic challenge at lymphoid sites distal from the initial Ag encounter are not well understood. We show in this study that memory B cells generated following s.c. immunization in one footpad generate secondary responses to soluble Ag given i.p. but not to Ag given s.c. in the contralateral footpad unless LPS is coadministered. Memory B cells do not express CD62L, and CD62L(-ve) cells cannot enter lymph nodes unless LPS-mediated inflammation is induced there. Functional TLR4 is required on the B cells, as well as on non-B cells, in the lymph node to achieve full recruitment. Furthermore, splenectomized mice fail to respond to such inflammatory s.c. challenge in contralateral footpads, unlike lymphadenectomized mice lacking the original draining lymph nodes. Splenectomized mice also fail to respond to i.p. challenge with soluble Ag. Together, these data indicate that, unlike the central memory pool of T cells, which circulates through resting lymph nodes, the majority of long-lived memory B cells are spleen resident and require inflammatory signals for mounting recall responses at distal challenge sites.  相似文献   
8.
This study is the first to demonstrate cloning of alr0882, a hypothetical protein gene of Anabaena PCC7120, its heterologous expression in Escherichia coli strain LN29MG1655 (?uspA::Kan) and functional complementation of abiotic stress tolerance of E. coli UspA. The recombinant vector pGEX-5X-2-alr0882 was used to transform ?uspA E. coli strain. The IPTG induced expression of a 56.6 kDa GST fusion protein was visualized on SDS–PAGE and attested by immunoblotting. E. coli ?uspA strain harboring pGEX-5X-2-alr0882 when grown under carbon, nitrogen, phosphorus and sulphur limitation and abiotic stresses e.g. nalidixic acid, cycloserine, CdCl2, H2O2, UV-B, phenazine methosulphate (PMS), dinitrophenol (DNP), NaCl, heat, carbofuron and CuCl2 demonstrated about 22.6–51.6% increase in growth over the cells transformed with empty vector. Expression of alr0882 gene in mutant E. coli as measured by semi-quantitative RT-PCR at different time points under selected treatments reaffirmed its role in tolerance against stresses employed in this study. Thus the results of this study vividly demonstrated that the novel protein alr0882, although appreciably different from the known UspA of E. coli, offers tolerance to abiotic stresses hence holds potential for the development of transgenic cyanobacteria.  相似文献   
9.

Background

Although efficacy is unknown, many men who have sex with men (MSM) attempt to reduce HIV risk by adapting condom use, partner selection, or sexual position to the partner’s HIV serostatus. We assessed the association of seroadaptive practices with HIV acquisition.

Methodology/Principal Findings

We pooled data on North American MSM from four longitudinal HIV-prevention studies. Sexual behaviors reported during each six-month interval were assigned sequentially to one of six mutually exclusive risk categories: (1) no unprotected anal intercourse (UAI), (2) having a single negative partner, (3) being an exclusive top (only insertive anal sex), (4) serosorting (multiple partners, all HIV negative), (5) seropositioning (only insertive anal sex with potentially discordant partners), and (6) UAI with no seroadaptive practices. HIV antibody testing was conducted at the end of each interval. We used Cox models to evaluate the independent association of each category with HIV acquisition, controlling for number of partners, age, race, drug use, and intervention assignment. 12,277 participants contributed to 60,162 six-month intervals with 663 HIV seroconversions. No UAI was reported in 47.4% of intervals, UAI with some seroadaptive practices in 31.8%, and UAI with no seroadaptive practices in 20.4%. All seroadaptive practices were associated with a lower risk, compared to UAI with no seroadaptive practices. However, compared to no UAI, serosorting carried twice the risk (HR = 2.03, 95%CI:1.51–2.73), whereas seropositioning was similar in risk (HR = 0.85, 95%CI:0.50–1.44), and UAI with a single negative partner and as an exclusive top were both associated with a lower risk (HR = 0.56, 95%CI:0.32–0.96 and HR = 0.55, 95%CI:0.36–0.84, respectively).

Conclusions/Significance

Seroadaptive practices appear protective when compared with UAI with no seroadaptive practices, but serosorting appears to be twice as risky as no UAI. Condom use and limiting number of partners should be advocated as first-line prevention strategies, but seroadaptive practices may be considered harm-reduction for men at greatest risk.  相似文献   
10.
Biological membranes, comprised of proteins anchored by their trans-membrane domains (TMDs) creating a semi-permeable phase with lipid constituents, serve as ‘checkposts’ for not only intracellular trafficking in eukaryotic cells but also for material transactions of all living cells with external environments. Hydropathy (or hydrophobicity) plots of ‘bitopic’ proteins (i.e. having single alpha-helical TMDs) are routinely utilized in biochemistry texts for predicting their TMDs. The number of amino acids (i.e. TMD length) embedded as alpha-helices may serve as indicators of thickness of biological membranes in which they reside under assumptions that are universally applied for fixing window sizes for identifying TMDs using hydropathy plots. In this work we explore variations in thickness of different eukaryotic biological membranes (reflected by TMD lengths of their resident proteins) over evolutionary time scales. Rigorous in silico analyses of over 23,000 non-redundant membrane proteins residing in different subcellular locations from over 200 genomes of fungi, plants, non-mammalian vertebrates and mammals, reveal that differences in plasma membrane and organellar TMD lengths have decreased over time (scales) of eukaryotic cellular evolution. While earlier work has indicated decreasing differences in TMD lengths with increasing ‘perceived’ organismal complexity, this work is the first report on TMD length variations as a function of evolutionary time of eukaryotic cellular systems. We report that differences in TMD lengths of bitopic proteins residing in plasma membranes and other intra-cellular locations have decreased with evolutionary time, suggesting better/more avenues of intracellular trafficking in the emergence of eukaryotic organisms.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号