首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   179篇
  免费   30篇
  2023年   1篇
  2022年   2篇
  2021年   1篇
  2020年   1篇
  2019年   2篇
  2018年   2篇
  2017年   2篇
  2016年   7篇
  2015年   11篇
  2014年   10篇
  2013年   18篇
  2012年   10篇
  2011年   6篇
  2010年   8篇
  2009年   4篇
  2008年   7篇
  2007年   11篇
  2006年   10篇
  2005年   12篇
  2004年   10篇
  2003年   7篇
  2002年   4篇
  2001年   5篇
  2000年   7篇
  1999年   10篇
  1998年   4篇
  1997年   3篇
  1996年   2篇
  1995年   1篇
  1993年   3篇
  1992年   1篇
  1991年   4篇
  1990年   3篇
  1989年   3篇
  1988年   3篇
  1987年   2篇
  1986年   1篇
  1985年   2篇
  1983年   1篇
  1982年   1篇
  1980年   2篇
  1976年   1篇
  1974年   3篇
  1972年   1篇
排序方式: 共有209条查询结果,搜索用时 15 毫秒
1.
In Streptococcus lactis ML3 and Streptococcus cremoris Wg2 the uptake of glutamate and glutamine is mediated by the same transport system, which has a 30-fold higher affinity for glutamine than for glutamate at pH 6.0. The apparent affinity constant for transport (KT) of glutamine is 2.5 +/- 0.3 microM, independent of the extracellular pH. The KTS for glutamate uptake are 3.5, 11.2, 77, and 1200 microM at pH 4.0, 5.1, 6.0, and 7.0, respectively. Recalculation of the affinity constants based on the concentration of glutamic acid in the solution yield KTS of 1.8 +/- 0.5 microM independent of the external pH, indicating that the protonated form of glutamate, i.e., glutamic acid, and glutamine are the transported species. The maximal rates of glutamate and glutamine uptake are independent of the extracellular pH as long as the intracellular pH is kept constant, despite large differences in the magnitude and composition of the components of the proton motive force. Uptake of glutamate and glutamine requires the synthesis of ATP either from glycolysis or from arginine metabolism and appears to be essentially unidirectional. Cells are able to maintain glutamate concentration gradients exceeding 4 X 10(3) for several hours even in the absence of metabolic energy. The t1/2s of glutamate efflux are 2, 12, and greater than 30 h at pH 5.0, 6.0, and 7.0, respectively. After the addition of lactose as energy source, the rate of glutamine uptake and the level of ATP are both very sensitive to arsenate. When the intracellular pH is kept constant, both parameters decrease approximately in parallel (between 0.2 and 1.0 mM ATP) with increasing concentrations of the inhibitor. These results suggest that the accumulation of glutamate and glutamine is energized by ATP or an equivalent energy-rich phosphorylated intermediate and not by the the proton motive force.  相似文献   
2.
3.
Alanyl-alpha-glutamate transport has been studied in Lactococcus lactis ML3 cells and in membrane vesicles fused with liposomes containing beefheart cytochrome c oxidase as a proton-motive-force-generating system. The uptake of Ala-Glu observed in de-energized cells can be stimulated 26-fold upon addition of lactose. No intracellular dipeptide pool could be detected in intact cells. In fused membranes, a 40-fold accumulation of Ala-Glu was observed in response to a proton motive force. Addition of ionophores and uncouplers resulted in a rapid efflux of the accumulated dipeptide, indicating that Ala-Glu accumulation is directly coupled to the proton motive force as a driving force. Ala-Glu uptake is an electrogenic process and the dipeptide is transported in symport with two protons. In both fused membranes and intact cells the same affinity constant (0.70 mM) for Ala-Glu uptake was found. Accumulated Ala-Glu is exchangeable with externally added alanyl-glutamate, glutamyl-glutamate, and leucyl-leucine, while no exchange occurred upon addition of the amino acid glutamate or alanine. These results indicate that the Ala-Glu transport system has a broad substrate specificity.  相似文献   
4.
Fermentation employing Saccharomyces cerevisiae has produced alcoholic beverages and bread for millennia. More recently, S. cerevisiae has been used to manufacture specific metabolites for the food, pharmaceutical, and cosmetic industries. Among the most important of these metabolites are compounds associated with desirable aromas and flavors, including higher alcohols and esters. Although the physiology of yeast has been well-studied, its metabolic modulation leading to aroma production in relevant industrial scenarios such as winemaking is still unclear. Here we ask what are the underlying metabolic mechanisms that explain the conserved and varying behavior of different yeasts regarding aroma formation under enological conditions? We employed dynamic flux balance analysis (dFBA) to answer this key question using the latest genome-scale metabolic model (GEM) of S. cerevisiae. The model revealed several conserved mechanisms among wine yeasts, for example, acetate ester formation is dependent on intracellular metabolic acetyl-CoA/CoA levels, and the formation of ethyl esters facilitates the removal of toxic fatty acids from cells using CoA. Species-specific mechanisms were also found, such as a preference for the shikimate pathway leading to more 2-phenylethanol production in the Opale strain as well as strain behavior varying notably during the carbohydrate accumulation phase and carbohydrate accumulation inducing redox restrictions during a later cell growth phase for strain Uvaferm. In conclusion, our new metabolic model of yeast under enological conditions revealed key metabolic mechanisms in wine yeasts, which will aid future research strategies to optimize their behavior in industrial settings.  相似文献   
5.
The mechanism of metabolic energy production by malolactic fermentation in Lactococcus lactis has been investigated. In the presence of L-malate, a proton motive force composed of a membrane potential and pH gradient is generated which has about the same magnitude as the proton motive force generated by the metabolism of a glycolytic substrate. Malolactic fermentation results in the synthesis of ATP which is inhibited by the ionophore nigericin and the F0F1-ATPase inhibitor N,N-dicyclohexylcarbodiimide. Since substrate-level phosphorylation does not occur during malolactic fermentation, the generation of metabolic energy must originate from the uptake of L-malate and/or excretion of L-lactate. The initiation of malolactic fermentation is stimulated by the presence of L-lactate intracellularly, suggesting that L-malate is exchanged for L-lactate. Direct evidence for heterologous L-malate/L-lactate (and homologous L-malate/L-malate) antiport has been obtained with membrane vesicles of an L. lactis mutant deficient in malolactic enzyme. In membrane vesicles fused with liposomes, L-malate efflux and L-malate/L-lactate antiport are stimulated by a membrane potential (inside negative), indicating that net negative charge is moved to the outside in the efflux and antiport reaction. In membrane vesicles fused with liposomes in which cytochrome c oxidase was incorporated as a proton motive force-generating mechanism, transport of L-malate can be driven by a pH gradient alone, i.e., in the absence of L-lactate as countersubstrate. A membrane potential (inside negative) inhibits uptake of L-malate, indicating that L-malate is transported an an electronegative monoanionic species (or dianionic species together with a proton). The experiments described suggest that the generation of metabolic energy during malolactic fermentation arises from electrogenic malate/lactate antiport and electrogenic malate uptake (in combination with outward diffusion of lactic acid), together with proton consumption as result of decarboxylation of L-malate. The net energy gain would be equivalent to one proton translocated form the inside to the outside per L-malate metabolized.  相似文献   
6.
Proline, which is the most abundant residue in beta-casein, stimulates growth of Lactococcus lactis in a proline-requiring strain (Lactococcus lactis subsp. cremoris Wg2) and in a proline-prototrophic strain (Lactococcus lactis subsp. lactis ML3). Both strains lack a proline-specific uptake system, and free proline can enter the cell only by passive diffusion across the cytoplasmic membrane. On the other hand, lactococci can actively take up proline-containing peptides via the lactococcal di- and tripeptide transport system, and these peptides are the major source of proline. Consequently, lactococcal growth on amino acid-based media is highly stimulated by the addition of proline-containing di- and tripeptides. Growth of L. lactis subsp. lactis ML3 on chemically defined media supplemented with casein does not appear proline limited. Addition of dipeptides (including proline-containing peptides) severely inhibits growth on a casein-containing medium, which indicates that the specific growth rate is determined by the balanced supply of different di- or tripeptides which compete for the same di- and tripeptide transport system.  相似文献   
7.
Multidrugs have the potential to bypass resistance. We investigated the in vitro activity and resistance circumvention of the multidrug cytarabine-L-fluorodeoxyuridine (AraC-L-5FdU), linked via a glycerophospholipid linkage. Cytotoxicity was determined using sensitive (A2780, FM3A/0) and resistant (AG6000, AraC resistant, deoxycytidine kinase deficient; FM3A/TK-, 5FdU resistant, thymidine kinase deficient) cell lines. Circumvention of nucleoside transporter and activating enzymes was determined using specific inhibitors, HPLC analysis and standard radioactivity assays. AraC-L-5FdU was active (IC50: 0.03 μM in both A2780 and FM3A/0), had some activity in AG6000 (IC50: 0.28 μ M), but no activity in FM3A/TK? (IC50: 18.3 μM). AraC-nucleotides were not detected in AG6000. 5FdU-nucleotides were detected in all cell lines. AraC-L-5FdU did not inhibit TS in FM3A/TK? (5%). Since phosphatase/nucleotidase-inhibition reduced cytotoxicity 7–70-fold, cleavage seems to be outside the cell, presumably to nucleotides, and then to nucleosides. The multidrug was orally active in the HT-29 colon carcinoma xenografts which are resistant toward the single drugs.  相似文献   
8.
Maintenance of a high degree of biodiversity in homogeneous environments is poorly understood. A complex cheese starter culture with a long history of use was characterized as a model system to study simple microbial communities. Eight distinct genetic lineages were identified, encompassing two species: Lactococcus lactis and Leuconostoc mesenteroides. The genetic lineages were found to be collections of strains with variable plasmid content and phage sensitivities. Kill-the-winner hypothesis explaining the suppression of the fittest strains by density-dependent phage predation was operational at the strain level. This prevents the eradication of entire genetic lineages from the community during propagation regimes (back-slopping), stabilizing the genetic heterogeneity in the starter culture against environmental uncertainty.  相似文献   
9.

Background

Schizophrenia is associated with impairments of the perception of objects, but how this affects higher cognitive functions, whether this impairment is already present after recent onset of psychosis, and whether it is specific for schizophrenia related psychosis, is not clear. We therefore tested the hypothesis that because schizophrenia is associated with impaired object perception, schizophrenia patients should differ in shifting attention between objects compared to healthy controls. To test this hypothesis, a task was used that allowed us to separately observe space-based and object-based covert orienting of attention. To examine whether impairment of object-based visual attention is related to higher order cognitive functions, standard neuropsychological tests were also administered.

Method

Patients with recent onset psychosis and normal controls performed the attention task, in which space- and object-based attention shifts were induced by cue-target sequences that required reorienting of attention within an object, or reorienting attention between objects.

Results

Patients with and without schizophrenia showed slower than normal spatial attention shifts, but the object-based component of attention shifts in patients was smaller than normal. Schizophrenia was specifically associated with slowed right-to-left attention shifts. Reorienting speed was significantly correlated with verbal memory scores in controls, and with visual attention scores in patients, but not with speed-of-processing scores in either group.

Conclusions

deficits of object-perception and spatial attention shifting are not only associated with schizophrenia, but are common to all psychosis patients. Schizophrenia patients only differed by having abnormally slow right-to-left visual field reorienting. Deficits of object-perception and spatial attention shifting are already present after recent onset of psychosis. Studies investigating visual spatial attention should take into account the separable effects of space-based and object-based shifting of attention. Impaired reorienting in patients was related to impaired visual attention, but not to deficits of processing speed and verbal memory.  相似文献   
10.
Laser‐capture microdissection (LCM) offers a reliable cell population enrichment tool and has been successfully coupled to MS analysis. Despite this, most proteomic studies employ whole tissue lysate (WTL) analysis in the discovery of disease biomarkers and in profiling analyses. Furthermore, the influence of tissue heterogeneity in WTL analysis, nor its impact in biomarker discovery studies have been completely elucidated. In order to address this, we compared previously obtained high resolution MS data from a cohort of 38 breast cancer tissues, of which both LCM enriched tumor epithelial cells and WTL samples were analyzed. Label‐free quantification (LFQ) analysis through MaxQuant software showed a significantly higher number of identified and quantified proteins in LCM enriched samples (3404) compared to WTLs (2837). Furthermore, WTL samples displayed a higher amount of missing data compared to LCM both at peptide and protein levels (p‐value < 0.001). 2D analysis on co‐expressed proteins revealed discrepant expression of immune system and lipid metabolisms related proteins between LCM and WTL samples. We hereby show that LCM better dissected the biology of breast tumor epithelial cells, possibly due to lower interference from surrounding tissues and highly abundant proteins. All data have been deposited in the ProteomeXchange with the dataset identifier PXD002381 ( http://proteomecentral.proteomexchange.org/dataset/PXD002381 ).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号