首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   46篇
  免费   1篇
  2022年   1篇
  2021年   1篇
  2019年   1篇
  2018年   3篇
  2016年   1篇
  2015年   1篇
  2014年   2篇
  2013年   2篇
  2012年   6篇
  2011年   4篇
  2010年   2篇
  2009年   2篇
  2008年   3篇
  2007年   5篇
  2006年   3篇
  2005年   3篇
  2004年   5篇
  2003年   1篇
  2000年   1篇
排序方式: 共有47条查询结果,搜索用时 968 毫秒
1.
Glioblastoma multiforme (GBM) is the most common primary brain cancer in adults and there are few effective treatments. GBMs contain cells with molecular and cellular characteristics of neural stem cells that drive tumour growth. Here we compare responses of human glioblastoma-derived neural stem (GNS) cells and genetically normal neural stem (NS) cells to a panel of 160 small molecule kinase inhibitors. We used live-cell imaging and high content image analysis tools and identified JNJ-10198409 (J101) as an agent that induces mitotic arrest at prometaphase in GNS cells but not NS cells. Antibody microarrays and kinase profiling suggested that J101 responses are triggered by suppression of the active phosphorylated form of polo-like kinase 1 (Plk1) (phospho T210), with resultant spindle defects and arrest at prometaphase. We found that potent and specific Plk1 inhibitors already in clinical development (BI 2536, BI 6727 and GSK 461364) phenocopied J101 and were selective against GNS cells. Using a porcine brain endothelial cell blood-brain barrier model we also observed that these compounds exhibited greater blood-brain barrier permeability in vitro than J101. Our analysis of mouse mutant NS cells (INK4a/ARF−/−, or p53−/−), as well as the acute genetic deletion of p53 from a conditional p53 floxed NS cell line, suggests that the sensitivity of GNS cells to BI 2536 or J101 may be explained by the lack of a p53-mediated compensatory pathway. Together these data indicate that GBM stem cells are acutely susceptible to proliferative disruption by Plk1 inhibitors and that such agents may have immediate therapeutic value.  相似文献   
2.
This study was aimed at investigating the phytochemical composition and antioxidant capacity of rhizomes, above‐ground vegetative parts and flowers of three Iris species: Iris humilis Georgi , Iris pumila L. and Iris variegata L. UHPLC‐Orbitrap MS analysis was used for determination of phytochemical profile. Total pigments, phenolics, flavonoids, soluble sugars and starch content as well as ABTS antioxidant capacity were also determined. In total, 52 phenolics compounds were identified with 9 compounds (derivatives of iriflophenone, apigenin C‐glycosides, luteolin O‐glycoside, isoflavones derivatives of iristectorigenin, dichotomitin, nigracin and irilone) never reported before in Iris spp. Differences in phenolic composition profile, pigments, soluble sugar, starch, total phenolics and flavonoids content and total antioxidant capacity were found among Iris species and different part of plants. Significant correlation between total phenolic content and antioxidant capacity was determined. The obtained results are comparable with those obtained for medical plants. These findings could be useful for fingerprinting characterization of Iris species and estimation of possible use in pharmaceutical industries.  相似文献   
3.
Rhodococcus sp. I24 can oxygenate indene via at least three independent enzyme activities: (i) a naphthalene inducible monooxygenase (ii) a naphthalene inducible dioxygenase, and (iii) a toluene inducible dioxygenase (TID). Pulsed field gel analysis revealed that the I24 strain harbors two megaplasmids of 340 and 50 kb. Rhodococcus sp. KY1, a derivative of the I24 strain, lacks the 340 kb element as well as the TID activity. Southern blotting and sequence analysis of an indigogenic, I24-derived cosmid suggested that an operon encoding a TID resides on the 340 kb element. Expression of the tid operon was induced by toluene but not by naphthalene. In contrast, naphthalene did induce expression of the nid operon, encoding the naphthalene dioxygenase in I24. Cell free protein extracts of Escherichia coli cells expressing tidABCD were used in HPLC-based enzyme assays to characterize the indene bioconversion of TID in vitro. In addition to 1-indenol, indene was transformed to cis-indandiol with an enantiomeric excess of 45.2% of cis-(1S,2R)-indandiol over cis-(1R,2S)-indandiol, as revealed by chiral HPLC analysis. The Km of TID for indene was 380 M. The enzyme also dioxygenated naphthalene to cis-dihydronaphthalenediol with an activity of 78% compared to the formation of cis-indandiol from indene. The Km of TID for naphthalene was 28 M. TID converted only trace amounts of toluene to 1,2-dihydro-3-methylcatechol after prolonged incubation time. The results indicate the role of the tid operon in the bioconversion of indene to 1-indenol and cis-(1S,2R)-indandiol by Rhodococcus sp. I24.  相似文献   
4.
Nodal and Activin belong to the TGF-β superfamily and are important regulators of embryonic stem cell fate. Here we investigated whether Nodal and Activin regulate self-renewal of pancreatic cancer stem cells. Nodal and Activin were hardly detectable in more differentiated pancreatic cancer cells, while cancer stem cells and stroma-derived pancreatic stellate cells markedly overexpressed Nodal and Activin, but not TGF-β. Knockdown or pharmacological inhibition of the Nodal/Activin receptor Alk4/7 in cancer stem cells virtually abrogated their self-renewal capacity and in vivo tumorigenicity, and reversed the resistance of orthotopically engrafted cancer stem cells to gemcitabine. However, engrafted primary human pancreatic cancer tissue with a substantial stroma showed no response due to limited drug delivery. The addition of a stroma-targeting hedgehog pathway inhibitor enhanced delivery of the Nodal/Activin inhibitor and translated into long-term, progression-free survival. Therefore, inhibition of the Alk4/7 pathway, if combined with hedgehog pathway inhibition and gemcitabine, provides a therapeutic strategy for targeting cancer stem cells.  相似文献   
5.
Clinical and serological profiles of idiopathic and drug-induced autoimmune diseases can be very similar. We compared data from idiopathic and antithyroid drug (ATD)-induced antineutrophil cytoplasmic antibody (ANCA)-positive patients. From 1993 to 2003, 2474 patients were tested for ANCA in the Laboratory for Allergy and Clinical Immunology in Belgrade. Out of 2474 patients, 72 (2.9%) were anti-proteinase 3 (PR3)- or anti-myeloperoxidase (MPO)-positive and their clinical and serological data were analyzed. The first group consisted of ANCA-associated idiopathic systemic vasculitis (ISV) diagnosed in 56/72 patients: 29 Wegener's granulomatosis (WG), 23 microscopic polyangiitis (MPA) and four Churg-Strauss syndrome. The second group consisted of 16/72 patients who became ANCA-positive during ATD therapy (12 receiving propylthiouracil and four receiving methimazole). We determined ANCA and antinuclear (ANA) antibodies by indirect immunofluorescence; PR3-ANCA, MPO-ANCA, anticardiolipin (aCL) and antihistone antibodies (AHA) by ELISA; and cryoglobulins by precipitation. Complement components C3 and C4, alpha-1 antitrypsin (α1 AT) and C reactive protein (CR-P) were measured by nephelometry. Renal lesions were present in 3/16 (18.8%) ATD-treated patients and in 42/56 (75%) ISV patients (p <0.001). Skin lesions occurred in 10/16 (62.5%) ATD-treated patients and 14/56 (25%) ISV patients (p <0.01). ATD-treated patients more frequently had MPO-ANCA, ANA, AHA, aCL, cryoglobulins and low C4 (p <0.01). ISV patients more frequently had low α1 AT (p = 0.059) and high CR-P (p <0.001). Of 16 ATD-treated patients, four had drug-induced ANCA vasculitis (three MPA and one WG), while 12 had lupus-like disease (LLD). Of 56 ISV patients, 13 died and eight developed terminal renal failure (TRF). There was no lethality in the ATD-treated group, but 1/16 with methimazole-induced MPA developed pulmonary-renal syndrome with progression to TRF. ANCA-positive ISV had a more severe course in comparison with ATD-induced ANCA-positive diseases. Clinically and serologically ANCA-positive ATD-treated patients can be divided into two groups: the first consisting of patients with drug-induced WG or MPA which resemble ISV and the second consisting of patients with LLD. Different serological profiles could help in the differential diagnosis and adequate therapeutic approach to ANCA-positive ATD-treated patients with symptoms of systemic disease.  相似文献   
6.
An unusual feature of the cocaine-binding aptamer is that it binds quinine much tighter than the ligand it was selected for, cocaine. Here we expand the repertoire of ligands that this aptamer binds to include the quinine-based antimalarial compounds amodiaquine, mefloquine, chloroquine and primaquine. Using isothermal titration calorimetry (ITC) we show that amodiaquine is bound by the cocaine-binding aptamer with an affinity of (7?±?4) nM, one of the tightest aptamer-small molecule affinities currently known. Amodiaquine, mefloquine and chloroquine binding are driven by both a favorable entropy and enthalpy of binding, while primaquine, quinine and cocaine binding are enthalpy driven with unfavorable binding entropy. Using nuclear magnetic resonance (NMR) and ITC methods we show that these ligands compete for the same binding sites in the aptamer. Our identification of such a tight binding ligand for this aptamer should prove useful in developing new biosensor techniques and applications using the cocaine-binding aptamer as a model system.  相似文献   
7.
This study was aimed to explore the sleep/wake states related cortico-pontine theta carrier frequency phase shift following a systemically induced chemical axotomy of the monoaminergic afferents within a brain of the freely moving rats. Our experiments were performed in 14 adult, male Sprague Dawley rats, chronically implanted for sleep recording. We recorded sleep during baseline condition, following sham injection (saline i.p. 1 ml/kg), and every week for 5 weeks following injection of the systemic neurotoxins (DSP-4 or PCA; 1 ml/kg, i.p.) for chemical axotomy of the locus coeruleus (LC) and dorsal raphe (DR) axon terminals. After sleep/wake states identification, FFT analysis was performed on 5 s epochs. Theta carrier frequency phase shift (?Φ) was calculated for each epoch by averaging theta Fourier component phase shifts, and the ?Φ values were plotted for each rat in control condition and 28 days following the monoaminergic lesions, as a time for permanently established DR or LC chemical axotomy. Calculated group averages have shown that ?Φ increased between pons and cortex significantly in all sleep/wake states (Wake, NREM and REM) following the monoaminergic lesions, with respect to controls. Monoaminergic lesions established the pontine leading role in the brain theta oscillations during all sleep/wake states.  相似文献   
8.
The structures and mechanism of action of many terpene cyclases are known, but no structures of diterpene cyclases have yet been reported. Here, we propose structural models based on bioinformatics, site‐directed mutagenesis, domain swapping, enzyme inhibition, and spectroscopy that help explain the nature of diterpene cyclase structure, function, and evolution. Bacterial diterpene cyclases contain ~20 α‐helices and the same conserved “QW” and DxDD motifs as in triterpene cyclases, indicating the presence of a βγ barrel structure. Plant diterpene cyclases have a similar catalytic motif and βγ‐domain structure together with a third, α‐domain, forming an αβγ structure, and in H+‐initiated cyclases, there is an EDxxD‐like Mg2+/diphosphate binding motif located in the γ‐domain. The results support a new view of terpene cyclase structure and function and suggest evolution from ancient (βγ) bacterial triterpene cyclases to (βγ) bacterial and thence to (αβγ) plant diterpene cyclases. Proteins 2010. © 2010 Wiley‐Liss, Inc.  相似文献   
9.
10.
Chronic stress is a risk factor for the development of numerous psychopathological conditions in humans including depression. Changes in gene expression of tyrosine-hydroxylase (TH), dopamine-β-hydroxylase (DBH) phenylethanolamine N-methyltransferase (PNMT), β1-, β2- and β3-adrenoceptors in right and left rat atria upon chronic unpredictable mild stress (CMS) were investigated. CMS decreased TH and DBH gene expression levels both in right and left atria and increased PNMT mRNA in left atria. No changes in mRNA levels of β1- and β2-adrenoceptors were recorded, whereas β3-adrenoreceptor mRNA level was significantly elevated in right atria of CMS rats. At the same time, CMS produced a significant increase of β1- and β2-adrenoreceptor mRNA levels in left atria, but did not affect β3-adrenoceptor mRNA level.The results presented here suggest that stress-induced depression expressed differential effects on catecholamine biosynthetic enzymes and β-adrenoceptors at molecular level in right and left atria of adult rat males. Elevated gene expression of PNMT in left atria of rats exposed to CMS can lead to altered physiological response and may play a role in the pathophysiology of cardiovascular function.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号