首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   26篇
  免费   1篇
  2021年   1篇
  2015年   1篇
  2013年   3篇
  2012年   1篇
  2011年   3篇
  2010年   1篇
  2009年   2篇
  2007年   1篇
  2006年   1篇
  2005年   2篇
  2002年   1篇
  2001年   1篇
  1998年   2篇
  1997年   4篇
  1995年   1篇
  1994年   1篇
  1983年   1篇
排序方式: 共有27条查询结果,搜索用时 265 毫秒
1.
The ontogeny of hearing in fishes has become a major interest among bioacoustics researchers studying fish behavior and sensory ecology. Most fish begin to detect acoustic stimuli during the larval stage which can be important for navigation, predator avoidance and settlement, however relatively little is known about the hearing capabilities of larval fishes. We characterized the acoustically evoked behavioral response (AEBR) in the plainfin midshipman fish, Porichthys notatus, and used this innate startle-like response to characterize this species'' auditory capability during larval development. Age and size of larval midshipman were highly correlated (r2 = 0.92). The AEBR was first observed in larvae at 1.4 cm TL. At a size ≥1.8 cm TL, all larvae responded to a broadband stimulus of 154 dB re1 µPa or −15.2 dB re 1 g (z-axis). Lowest AEBR thresholds were 140–150 dB re 1 µPa or −33 to −23 dB re 1 g for frequencies below 225 Hz. Larval fish with size ranges of 1.9–2.4 cm TL had significantly lower best evoked frequencies than the other tested size groups. We also investigated the development of the lateral line organ and its function in mediating the AEBR. The lateral line organ is likely involved in mediating the AEBR but not necessary to evoke the startle-like response. The midshipman auditory and lateral line systems are functional during early development when the larvae are in the nest and the auditory system appears to have similar tuning characteristics throughout all life history stages.  相似文献   
2.
While the neural circuitry and physiology of the auditory system is well studied among vertebrates, far less is known about how the auditory system interacts with other neural substrates to mediate behavioral responses to social acoustic signals. One species that has been the subject of intensive neuroethological investigation with regard to the production and perception of social acoustic signals is the plainfin midshipman fish, Porichthys notatus, in part because acoustic communication is essential to their reproductive behavior. Nesting male midshipman vocally court females by producing a long duration advertisement call. Females localize males by their advertisement call, spawn and deposit all their eggs in their mate’s nest. As multiple courting males establish nests in close proximity to one another, the perception of another male’s call may modulate individual calling behavior in competition for females. We tested the hypothesis that nesting males exposed to advertisement calls of other males would show elevated neural activity in auditory and vocal-acoustic brain centers as well as differential activation of catecholaminergic neurons compared to males exposed only to ambient noise. Experimental brains were then double labeled by immunofluorescence (-ir) for tyrosine hydroxylase (TH), an enzyme necessary for catecholamine synthesis, and cFos, an immediate-early gene product used as a marker for neural activation. Males exposed to other advertisement calls showed a significantly greater percentage of TH-ir cells colocalized with cFos-ir in the noradrenergic locus coeruleus and the dopaminergic periventricular posterior tuberculum, as well as increased numbers of cFos-ir neurons in several levels of the auditory and vocal-acoustic pathway. Increased activation of catecholaminergic neurons may serve to coordinate appropriate behavioral responses to male competitors. Additionally, these results implicate a role for specific catecholaminergic neuronal groups in auditory-driven social behavior in fishes, consistent with a conserved function in social acoustic behavior across vertebrates.  相似文献   
3.
The development of Shark Chaser by the U.S. Navy during World War II was the first serious effort to develop a chemical shark repellent. In the decade following the war reports of Shark Chaser ineffectiveness led the Office of Naval Research to search for a more efficacious shark repellent. After years without success, ONR eventually canceled the use of Shark Chaser and abandoned the search for a chemical shark repellent. In the early 1970s, interest in chemical shark repellents was renewed by the discovery of pardaxin, a natural shark repellent secreted by the Red Sea Moses sole, Pardachirus marmoratus. The surfactant-like nature of pardaxin led investigators to test the potential of various surfactants as repellents. Subsequent studies indicated that the shark repellent efficacy of the effective alkyl sulfate surfactants was due to their hydrophobic nature. Here we report tests conducted on juvenile swell sharks, Cephaloscyllium ventriosum, to determine if the noxious quality of alkyl sulfates is affected by surfactant hydrophobicity [carbon chain length and ethylene oxide (EO) groups] and counterions. Our results indicate that the aversive response of sharks to alkyl sulfate surfactants increases with carbon chain length from octyl to dodecyl, decreases with the addition of EO groups and is not affected by counterions. This study confirms that dodecyl sulfate is the most effective surfactant shark repellent, but it does not meet the Navy's potency requirement for a nondirectional surrounding-cloud type repellent of 100 parts per billion (0.1ugml–1). Thus, dodecyl sulfate is only practical as a directional repellent such as in a squirt application. Future research should test the action of alkyl sulfates on cell membranes, the potential of other biotoxic agents, and semiochemicals in the search for an effective chemical shark repellent.  相似文献   
4.

Background

The lycophytes are an ancient lineage of vascular plants that diverged from the seed plant lineage about 400 Myr ago. Although the lycophytes occupy an important phylogenetic position for understanding the evolution of plants and their genomes, no genomic resources exist for this group of plants.

Results

Here we describe the construction of a large-insert bacterial artificial chromosome (BAC) library from the lycophyte Selaginella moellendorffii. Based on cell flow cytometry, this species has the smallest genome size among the different lycophytes tested, including Huperzia lucidula, Diphaiastrum digita, Isoetes engelmanii and S. kraussiana. The arrayed BAC library consists of 9126 clones; the average insert size is estimated to be 122 kb. Inserts of chloroplast origin account for 2.3% of the clones. The BAC library contains an estimated ten genome-equivalents based on DNA hybridizations using five single-copy and two duplicated S. moellendorffii genes as probes.

Conclusion

The S. moellenforffii BAC library, the first to be constructed from a lycophyte, will be useful to the scientific community as a resource for comparative plant genomics and evolution.  相似文献   
5.
The electric sense of elasmobranch fishes (sharks and rays) is an important sensory modality known to mediate the detection of bioelectric stimuli. Although the best known function for the use of the elasmobranch electric sense is prey detection, relatively few studies have investigated other possible biological functions. Here, we review recent studies that demonstrate the elasmobranch electrosensory system functions in a wide number of behavioral contexts including social, reproductive and anti-predator behaviors. Recent work on non-electrogenic stingrays demonstrates that the electric sense is used during reproduction and courtship for conspecific detection and localization. Electrogenic skates may use their electrosensory encoding capabilities and electric organ discharges for communication during social and reproductive interactions. The electric sense may also be used to detect and avoid predators during early life history stages in many elasmobranch species. Embryonic clearnose skates demonstrate a ventilatory freeze response when a weak low-frequency electric field is imposed upon the egg capsule. Peak frequency sensitivity of the peripheral electrosensory system in embryonic skates matches the low frequencies of phasic electric stimuli produced by natural fish egg-predators. Neurophysiology experiments reveal that electrosensory tuning changes across the life history of a species and also seasonally due to steroid hormone changes during the reproductive season. We argue that the ontogenetic and seasonal variation in electrosensory tuning represent an adaptive electrosensory plasticity that may be common to many elasmobranchs to enhance an individual's fitness throughout its life history.  相似文献   
6.
A 4.9 m TL megamouth shark, only the sixth specimen known to science, was tracked continuously for 50.5 h, during which it exhibited distinct vertical migrations at the dawn and dusk transitions. The male shark was captured on 21 October 1990 in a drift gill net off Dana Point, California, restrained overnight in a harbor, and released at sea the next afternoon. Horizontally, the shark moved slowly southward, covering 62 km on a relatively straight path with no significant diel changes. For the major part of the tracking, its rate of movement was 1.15 km h–1, as determined from positions at 15 min intervals. Considering a probable head current of 10–25 cm sec–1, its estimated through-the-water swimming speed was more likely 1.5–2.1 km h–1 (X¯ = 1.8, representing 0.1 body lengths sec–1). Vertically, the shark stayed shallow at night (12–25 m depth range, X¯ = 17) and deep during the days (120–166 m, X¯ = 149) but still well above the bottom at 700–850 m. The four twilight depth-change events were very distinct and always spanned the times of sunset or sunrise. The ascent and descent profiles are a reasonble match to isolumes on the order of 0.4 lux for an extinction coefficient (0.07) calculated from water transparency measurements. Furthermore, the steepest parts of the shark's profiles correspond closely to the times of maximum rate-of-change of illumination. These findings suggest that, except during nights, the shark's chosen depth was to a large degree determined by light level.  相似文献   
7.
Presence of the dihydrouridine (D) stem in the mitochondrial cysteine tRNA is unusually variable among lepidosaurian reptiles. Phylogenetic and comparative analyses of cysteine tRNA gene sequences identify eight parallel losses of the D-stem, resulting in D-arm replacement loops. Sampling within the monophyletic Acrodonta provides no evidence for reversal. Slipped-strand mispairing of noncontiguous repeated sequences during replication or direct replication slippage can explain repeats observed within cysteine tRNAs that contain a D-arm replacement loop. These two mechanisms involving replication slippage can account for the loss of the cysteine tRNA D-stem in several lepidosaurian lineages, and may represent general mechanisms by which the secondary structures of mitochondrial tRNAs are altered.   相似文献   
8.
The auditory system of the plainfin midshipman fish, Porichthys notatus, is an important sensory receiver system used to encode intraspecific social communication signals in adults, but the response properties and function of this receiver system in pre-adult stages are less known. In this study we examined the response properties of auditory-evoked potentials from the midshipman saccule, the main organ of hearing in this species, to determine whether the frequency response and auditory threshold of saccular hair cells to behaviorally relevant single tone stimuli change during ontogeny. Saccular potentials were recorded from three relative sizes of midshipman fish: small juveniles [1.9–3.1 cm standard length (SL), large juveniles (6.8–8.0 cm SL) and non-reproductive adults (9.0–22.6 cm SL)]. The auditory evoked potentials were recorded from the rostral, middle and caudal regions of the saccule while single tone stimuli (75–1,025 Hz) were presented via an underwater speaker. We show that the frequency response and auditory threshold of the midshipman saccule is established early in development and retained throughout ontogeny. We also show that saccular sensitivity to frequencies greater than 385 Hz increases with age/size and that the midshipman saccule of small and large juveniles, like that of non-reproductive adults, is best suited to detect low frequency sounds (<105 Hz) in their natural acoustic environment.  相似文献   
9.
A novel form of auditory plasticity for enhanced detection of social signals was described in a teleost fish, Porichthys notatus (Batrachoididae, Porichthyinae). The seasonal onset of male calling coincides with inshore migration from deep waters by both sexes and increased female sensitivity to dominant frequencies of male calls. The closely related Lusitanian toadfish, Halobatrachus didactylus, (Batrachoididae, Halophryninae) also breeds seasonally and relies on acoustic communication to find mates but, instead, both sexes stay in estuaries and show vocal activity throughout the year. We investigated whether the sensitivity of the inner ear saccule of H. didactylus is seasonally plastic and sexually dimorphic. We recorded evoked potentials from populations of saccular hair cells from non-reproductive and reproductive males and females in response to 15–945 Hz tones. Saccular hair cells were most sensitive at 15–205 Hz (thresholds between 111 and 118 dB re. 1 μPa). Both sexes showed identical hearing sensitivity and no differences were found across seasons. The saccule was well suited to detect conspecific vocalizations and low frequencies that overlapped with lateral line sensitivity. We showed that the saccule in H. didactylus has major importance in acoustic communication throughout the year and that significant sensory differences may exist between the two batrachoidid subfamilies.  相似文献   
10.
The complete cDNA sequence and protein reading frame of a developmentally regulated hemocyanin subunit in the Dungeness crab (Cancer magister) is presented. The protein sequence is aligned with 18 potentially homologous hemocyanin-type proteins displaying apparent sequence similarities. Functional domains are identified, and a comparison of predicted hydrophilicities, surface probabilities, and regional backbone flexibilities provides evidence for a remarkable degree of structural conservation among the proteins surveyed. Parsimony analysis of the protein sequence alignment identifies four monophyletic groups on the arthropodan branch of the hemocyanin gene tree: crustacean hemocyanins, insect hexamerins, chelicerate hemocyanins, and arthropodan prophenoloxidases. They form a monophyletic group relative to molluscan hemocyanins and nonarthropodan tyrosinases. Arthropodan prophenoloxidases, although functionally similar to tyrosinases, appear to belong to the arthropodan hexamer- type hemolymph proteins as opposed to molluscan hemocyanins and tyrosinases.   相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号