首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   65篇
  免费   10篇
  2024年   1篇
  2021年   4篇
  2020年   1篇
  2017年   3篇
  2016年   3篇
  2015年   14篇
  2014年   5篇
  2013年   8篇
  2012年   7篇
  2011年   4篇
  2010年   2篇
  2009年   1篇
  2008年   3篇
  2007年   1篇
  2006年   2篇
  2005年   3篇
  2004年   2篇
  2003年   4篇
  2000年   1篇
  1998年   1篇
  1997年   1篇
  1995年   1篇
  1990年   1篇
  1984年   1篇
  1977年   1篇
排序方式: 共有75条查询结果,搜索用时 586 毫秒
1.
Theoretical techniques have been developed and/or improved to predict the molecular structure of lanthanide complexes which were used to calculate their electronic properties, in particular, their electronic spectra and energy levels necessary to calculate the rates of energy transfer from the ligands to the metal ion. The molecular structure has been obtained by the SMLC/AM1 (Sparkle Model for the Calculation of Lanthanide Complexes – Austin Model 1) model where the lanthanide ion is simulated by a sparkle implemented into the AM1 Hamiltonian used to perform a HF-SCF (Hartree-Fock Self-Consistent Field) calculation. The previous implementation of the SMLC/AM1 model (sparkle/1) involving only two parameters has been generalized to be consistent with the AM1 Hamiltonian and the new model (sparkle/2) significantly improved the prediction of molecular structures of Eu(III) complexes. For the electronic spectra and energy level calculations of the lanthanide complexes the model replaces the metal ion by a point charge with the ligands held in their positions as determined by the SMLC/AM1 model, and uses a INDO/S-CI (intermediate neglect of differential overlap/spectroscopic-configuration interaction) model. A preliminary study of the solvent effects on the absorption spectra of the free ligand is also presented. For the ligand-lanthanide ion energy transfer Fermi's golden rule is used with the multipolar and exchange mechanisms being implemented and tested for several complexes. These theoretical techniques have been applied to several complexes yielding very good results when compared to experimental data as well as predictions for the molecular and electronic structures and the relative contributions of the mechanisms for the energy transfer rates. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   
2.
3.
Ethanol extract obtained from dried leaves of Acmella oleracea afforded after a liquid/liquid partition procedure a larvicidal hexane fraction (LC50 = 145.6 ppm) and a non larvicidal dichloromethane one. From the inactive fraction, three amides were identified, two new structures, named deca-6,9-dihydroxy-(2E,7E)-dienoic acid isobutylamide (1), deca-8,9-dihydroxy-(2E,6Z)-dienoic acid isobutylamide (2) and the known nona-2,3-dihydroxy-6,8-diynoic acid 2-phenylethylamide (3). Bioassay-guided chromatographic fractionation of the hexane partition led to the identification of an amide mixture, nona-(2Z)-en-6,8-diynoic acid 2-phenylethylamide (4) and deca-(2Z)-en-6,8-diynoic acid 2-phenylethlylamide (5). This mixture was active against Aedes aegypti larvae at LC50 = 7.6 ppm. Low toxicity of crude extracts and derived fractions on Artemia salina nauplies showed the possibility of using them to control the A. aegypti mosquito larvae. This is the first report on larvicidal activity of acetylenic 2-phenylethylamides and their identification in A. oleracea leaves.  相似文献   
4.
Edunol (3), a pterocarpan isolated from Harpalyce brasiliana, a plant used in the northeast of Brazil against snakebites, was obtained by synthesis and showed antimyotoxic, antiproteolytic and PLA2 inhibitor properties. These proprieties could be improved through the synthesis of a bioisoster (5), where the prenyl group was replaced by the benzyl group.  相似文献   
5.
Colonisation of extremely acidic waters (pH 3) by aquatic angiosperms occurs widely, but is poorly documented. Unlike acid rain affected and other naturally acidic aquatic ecosystems, waters with pH 3 usually have a high conductivity, with high concentrations of SO4 2- and often high concentrations of Fe3+, other heavy metal ions and Al3+. Where Fe3+ concentration is high, as in many mine waters, it provides a strong buffering system. In such waters, the biogeochemical Fe cycle exerts over water chemistry and the availability of nutrients and carbon for organisms. Biological activity is limited by low concentrations of phosphorus and inorganic carbon (DIC), which in this pH range is essentially all in the form of dissolved CO2. A number of angiosperms grow in such waters including Phragmites australis, Typha spp. and Juncus bulbosus, though the last is the only one reported to grow totally submerged in waters with pH 3 . J. bulbosus occurs in many lignite mining lakes in Lusatia (north eastern Germany) with pH 3. The characteristics and possible survival strategies for this and other species are discussed.  相似文献   
6.
7.
8.
Safety concerns related to the increasing and widespread application of synthetic coloring agents have increased the demand for natural colorants. Fungi have been employed in the production of novel and safer colorants. In order to obtain the colorants from fermented broth, suitable extraction systems must be developed. Aqueous two‐phase polymer systems (ATPPS) offer a favorable chemical environment and provide a promising alternative for extracting and solubilizing these molecules. The aim of this study was to investigate the partitioning of red colorants from the fermented broth of Penicillium purpurogenum using an ATPPS composed of poly(ethylene glycol) (PEG) and sodium polyacrylate (NaPA). Red colorants partitioned preferentially to the top (PEG‐rich phase). In systems composed of PEG 6,000 g/mol/NaPA 8,000 g/mol, optimum colorant partition coefficient (KC) was obtained in the presence of NaCl 0.1 M (KC = 10.30) while the PEG 10,000 g/mol/NaPA 8,000 g/mol system in the presence of Na2SO4 0.5 M showed the highest KC (14.78). For both polymers, the mass balance (%MB) and yield in the PEG phase (%ηTOP) were close to 100 and 79%, respectively. The protein selectivity in all conditions evaluated ranged from 2.0–3.0, which shows a suitable separation of the red colorants and proteins present in the fermented broth. The results suggest that the partitioning of the red colorants is dependent on both the PEG molecular size and salt type. Furthermore, the results obtained support the potential application of ATPPS as the first step of a purification process to recover colorants from fermented broth of microorganisms. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 31:1295–1304, 2015  相似文献   
9.
10.
Kaposi sarcoma-associated herpesvirus (KSHV) has a causative role in several human malignancies. KSHV latency-associated nuclear antigen (LANA) mediates persistence of viral episomes in latently infected cells. LANA mediates KSHV DNA replication and segregates episomes to progeny nuclei. The structure of the LANA DNA binding domain was recently solved, revealing a positive electrostatic patch opposite the DNA binding surface, which is the site of BET protein binding. Here we investigate the functional role of the positive patch in LANA-mediated episome persistence. As expected, LANA mutants with alanine or glutamate substitutions in the central, peripheral, or lateral portions of the positive patch maintained the ability to bind DNA by EMSA. However, all of the substitution mutants were deficient for LANA DNA replication and episome maintenance. Mutation of the peripheral region generated the largest deficiencies. Despite these deficiencies, all positive patch mutants concentrated to dots along mitotic chromosomes in cells containing episomes, similar to LANA. The central and peripheral mutants, but not the lateral mutants, were reduced for BET protein interaction as assessed by co-immunoprecipitation. However, defects in BET protein binding were independent of episome maintenance function. Overall, the reductions in episome maintenance closely correlated with DNA replication deficiencies, suggesting that the replication defects account for the reduced episome persistence. Therefore, the electrostatic patch exerts a key role in LANA-mediated DNA replication and episome persistence and may act through a host cell partner(s) other than a BET protein or by inducing specific structures or complexes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号