首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   22篇
  免费   1篇
  2021年   1篇
  2018年   1篇
  2017年   1篇
  2016年   1篇
  2015年   1篇
  2014年   1篇
  2013年   3篇
  2012年   3篇
  2011年   1篇
  2010年   1篇
  2009年   1篇
  2008年   2篇
  2001年   1篇
  2000年   1篇
  1999年   1篇
  1990年   1篇
  1985年   1篇
  1961年   1篇
排序方式: 共有23条查询结果,搜索用时 46 毫秒
1.
People who have remitted from depression are at increased risk for relapse if they rate their relatives as being critical of them on a simple self-report measure of Perceived Criticism (PC). To explore neural mechanisms associated with this we used functional magnetic resonance imaging (fMRI) to examine how people with different levels of PC responded to hearing criticism from their own mothers. To maximize variability in affective reactivity, depressed, recovered depressed, and healthy control participants (n = 33) were classified as high or low in PC based on a median split. They were then exposed to personally-relevant critical and praising comments from their mothers. Perceived Criticism levels were unrelated to depression status and to negative mood change after hearing criticism. However, compared to low PC participants, those who scored high on PC showed differential activation in a network of regions associated with emotion reactivity and regulation, including increased amygdala activity and decreased reactions in prefrontal regulatory regions when they heard criticism. This was not the case for praise. Criticism may be a risk factor for relapse because it helps to “train” pathways characteristic of depressive information processing. The Perceived Criticism measure may help identify people who are more susceptible to this vulnerability.  相似文献   
2.
Close proximity to an attachment figure, such as a caregiver, has been shown to attenuate threat-related activity in limbic regions such as the hypothalamus in healthy individuals. We hypothesized that such features might be similarly attenuated by proximity during a potentially stressful situation in a clinically anxious population of youths. Confirmation of this hypothesis could support the role of attachment figures in the management of anxiety among children and adolescents. Three groups were analyzed: anxious children and adolescents who requested that their caregiver accompany them in the scanner room, anxious children and adolescents without their caregiver in the scanner room and healthy controls (each of N = 10). The groups were matched for age and, among the two anxious groups, for diagnosis (mean age 9.5). The children and adolescents were exposed to physical threat words during an fMRI assessment. Results indicate that activity in the hypothalamus, ventromedial, and ventrolateral prefrontal cortex were significantly reduced in anxious children and adolescents who requested that their caregiver accompany them in the scanner room compared to those without their caregiver in the scanner room. Mean activity in these regions in anxious children and adolescents with their caregiver in the scanner room was comparable to that of healthy controls. These data suggest links between social contact and neural mechanisms of emotional reactivity; specifically, presence of caregivers moderates the increase in anxiety seen with stressful stimuli. Capitalizing on the ability of anxious youths to manifest low levels of anxiety-like information processing in the presence of a caregiver could help in modeling adaptive function in behavioral treatments.  相似文献   
3.
Depression is one of the most prevalent and debilitating of the psychiatric disorders. Studies have shown that cognitive therapy is as efficacious as antidepressant medication at treating depression, and it seems to reduce the risk of relapse even after its discontinuation. Cognitive therapy and antidepressant medication probably engage some similar neural mechanisms, as well as mechanisms that are distinctive to each. A precise specification of these mechanisms might one day be used to guide treatment selection and improve outcomes.  相似文献   
4.
5.
Microsomal epoxide hydrolase catalyses the hydrolysis of epoxides to water-soluble trans-dihydrodiols. We studied the expression of the hydrolase in synovial tissue samples from patients with osteoarthritis (n=20), rheumatoid arthritis (n=36), ankylosing spondylitis (n=10) or psoriatic arthritis (n=15) by use of immunohistochemistry with videodensitometric quantification of staining. Strong immunostaining for microsomal epoxide hydrolase was detected in tunica media of synovial blood vessels and moderate staining in synovial lining cells. Experiments with antibodies against CD68 and CLA suggested that both type A (macrophage-like) and type B lining cells (fibroblast-like synoviocytes) express the hydrolase. In addition, some of the subsynovial fibroblast-like cells, histiocytes and monocytes were intensively stained for microsomal epoxide hydrolase. In general, there were no major differences in the intensity of immunostaining for the hydrolase between the diagnostic groups. The enzyme may be involved in local hydrolysis of epoxide metabolites of endo- and xenobiotics in synovial tissue.  相似文献   
6.
The boundaries between oceanographic domains often function as dispersal barriers for many temperate marine species with a dispersive pelagic larval phase. Yelloweye rockfish (Sebastes ruberrimus, YR) are widely distributed across the northeastern Pacific Ocean, inhabiting coastal rocky reefs from the Aleutian Islands in Alaska through southern California. This species exhibits an extended pelagic larval duration and has the capacity for long distance larval transport. We assayed 2,862 YR individuals from 13 general areas in the northeast Pacific Ocean for allelic variation at nine microsatellite loci. Bayesian model-based clustering analyses grouped individuals from the Strait of Georgia (SG) into a distinct genetic cluster, while individuals from outer coastal water locations (OCLs) were partitioned equally across two genetic clusters, including the cluster associated with the SG fish. Pairwise FST values were consistently an order of magnitude higher for comparisons between the SG and OCLs than they were for all OCL-OCL comparisons (∼0.016 vs. ∼0.001). This same pattern was observed across two time points when individuals were binned into an “old” and “young” group according to birth year (old: ∼0.020 vs. 0.0003; young: ∼0.020 vs. ∼0.004). Additionally, mean allelic richness was markedly lower within the SG compared to the OCLs (8.00 vs. 10.54–11.77). These results indicate that the Strait of Georgia “deep-basin” estuary oceanographic domain acts as a dispersal barrier from the outer coastal waters via the Juan de Fuca Strait. Alternatively, selection against maladapted dispersers across this oceanographic transition may underlie the observed genetic differentiation between the Georgia basin and the outer coastal waters, and further work is needed to confirm the SG-OCL divide acts as a barrier to larval dispersal.  相似文献   
7.
8.
The number of physiological investigations in the mouse, mus musculus, has experienced a recent surge, paralleling the growth in methods of genetic targeting for microcircuit dissection and disease modeling. The introduction of optogenetics, for example, has allowed for bidirectional manipulation of genetically-identified neurons, at an unprecedented temporal resolution. To capitalize on these tools and gain insight into dynamic interactions among brain microcircuits, it is essential that one has the ability to record from ensembles of neurons deep within the brain of this small rodent, in both head-fixed and freely behaving preparations. To record from deep structures and distinct cell layers requires a preparation that allows precise advancement of electrodes towards desired brain regions. To record neural ensembles, it is necessary that each electrode be independently movable, allowing the experimenter to resolve individual cells while leaving neighboring electrodes undisturbed. To do both in a freely behaving mouse requires an electrode drive that is lightweight, resilient, and highly customizable for targeting specific brain structures.A technique for designing and fabricating miniature, ultralight weight, microdrive electrode arrays that are individually customizable and easily assembled from commercially available parts is presented. These devices are easily scalable and can be customized to the structure being targeted; it has been used successfully to record from thalamic and cortical regions in a freely behaving animal during natural behavior.  相似文献   
9.
Newly formed hybrid populations provide an opportunity to examine the initial consequences of secondary contact between species and identify genetic patterns that may be important early in the evolution of hybrid inviability. Widespread introductions of rainbow trout (Oncorhynchus mykiss) into watersheds with native cutthroat trout (Oncorhynchus clarkii) have resulted in hybridization. These introductions have contributed to the decline of native cutthroat trout populations. Here, we examine the pattern of hybridization between introduced rainbow trout and 2 populations of cutthroat trout native to Colorado. For this study, we utilized 7 diagnostic, codominant nuclear markers and a diagnostic mitochondrial marker to investigate hybridization in a population of greenback cutthroat trout (Oncorhynchus clarkii stomias) and a population of Colorado River cutthroat trout (Oncorhynchus clarkii pleuriticus). We infer that cutthroat-rainbow trout hybrid swarms have formed in both populations. Although a mixture of hybrid genotypes was present, not all genotype combinations were detected at expected frequencies. We found evidence that mitochondrial DNA introgression in hybrids is asymmetric and more likely from rainbow trout than from cutthroat trout. A difference in spawning time of the 2 species or differences in the fitness between the reciprocal crosses may explain the asymmetry. Additionally, the presence of intraspecific cytonuclear associations found in both populations is concordant with current hypotheses regarding coevolution of mitochondrial and nuclear genomes.  相似文献   
10.
Microsomal epoxide hydrolase is a biotransformation enzyme which is involved in the hydrolysis of various epoxides and epoxide intermediates. In the present study, its distribution was investigated in both normal human tissues and human tumours of different histogenetic origin using immunohistochemical techniques. In normal tissue, epithelial cells were more often and more intensely immunostained than mesenchymal cells. The main epithelial cell types expressing microsomal epoxide hydrolase were hepatocytes, acinus cells of the pancreas, and cells of salivary and adrenal glands. Immunostained cells of mesenchymal origin included monocytes, fibrocytes, fibroblasts, vessel endothelium, muscle cells, and cells of the reproductive system. Three patterns of expression were observed in tumour tissues: (1) moderate or strong in hepatocellular carcinomas, tumours of the adrenal gland, and theca-fibromas of the ovary; (2) inhomogeneous staining pattern of variable intensity in breast cancer, lung cancer, colorectal carcinomas, carcinoid tumours, and some tumours of mesenchymal origin; and (3) no expression in malignant melanomas, malignant lymphomas, and renal carcinomas. These data indicate that microsomal epoxide hydrolase expression is not restricted to tissue of any particular histogenetic origin. Nonetheless, immunohistochemical identification of microsomal epoxide hydrolase may be helpful in some well-defined histological settings, for example, confirmation of hepatocellular carcinoma.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号