首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
  2018年   1篇
  2016年   2篇
  2012年   1篇
  2011年   1篇
排序方式: 共有5条查询结果,搜索用时 359 毫秒
1
1.
BackgroundAs Bangladesh, India and Nepal progress towards visceral leishmaniasis (VL) elimination, it is important to understand the role of asymptomatic Leishmania infection (ALI), VL treatment relapse and post kala-azar dermal leishmaniasis (PKDL) in transmission.

Methodology/ Principal Finding

We reviewed evidence systematically on ALI, relapse and PKDL. We searched multiple databases to include studies on burden, risk factors, biomarkers, natural history, and infectiveness of ALI, PKDL and relapse. After screening 292 papers, 98 were included covering the years 1942 through 2016. ALI, PKDL and relapse studies lacked a reference standard and appropriate biomarker. The prevalence of ALI was 4–17-fold that of VL. The risk of ALI was higher in VL case contacts. Most infections remained asymptomatic or resolved spontaneously. The proportion of ALI that progressed to VL disease within a year was 1.5–23%, and was higher amongst those with high antibody titres. The natural history of PKDL showed variability; 3.8–28.6% had no past history of VL treatment. The infectiveness of PKDL was 32–53%. The risk of VL relapse was higher with HIV co-infection. Modelling studies predicted a range of scenarios. One model predicted VL elimination was unlikely in the long term with early diagnosis. Another model estimated that ALI contributed to 82% of the overall transmission, VL to 10% and PKDL to 8%. Another model predicted that VL cases were the main driver for transmission. Different models predicted VL elimination if the sandfly density was reduced by 67% by killing the sandfly or by 79% by reducing their breeding sites, or with 4–6y of optimal IRS or 10y of sub-optimal IRS and only in low endemic setting.

Conclusion/ Significance

There is a need for xenodiagnostic and longitudinal studies to understand the potential of ALI and PKDL as reservoirs of infection.  相似文献   
2.

Background

The VL elimination strategy requires cost-effective tools for case detection and management. This intervention study tests the yield, feasibility and cost of 4 different active case detection (ACD) strategies (camp, index case, incentive and blanket approach) in VL endemic districts of India, Nepal and Bangladesh.

Methodology/Principal Findings

First, VL screening (fever more than 14 days, splenomegaly, rK39 test) was performed in camps. This was followed by house to house screening (blanket approach). An analysis of secondary VL cases in the neighborhood of index cases was simulated (index case approach). A second screening round was repeated 4–6 months later. In another sub-district in India and Nepal, health workers received incentives for detecting new VL cases over a 4 month period (incentive approach). This was followed by house screening for undetected cases. A total of 28 new VL cases were identified by blanket approach in the 1st screening round, and used as ACD gold standard. Of these, the camp approach identified 22 (sensitivity 78.6%), index case approach identified 12 (sensitivity – 42.9%), and incentive approach identified 23 new VL cases out of 29 cases detected by the house screening (sensitivity – 79.3%). The effort required to detect a new VL case varied (blanket approach – 1092 households, incentive approach – 978 households; index case approach – 788 households had to be screened). The cost per new case detected varied (camp approach $21 – $661; index case approach $149 – $200; incentive based approach $50 – $543; blanket screening $112 – $629). The 2nd screening round yielded 20 new VL cases. Sixty and nine new PKDL cases were detected in the first and second round respectively.

Conclusions/Significance

ACD in the VL elimination campaign has a high yield of new cases at programme costs which vary according to the screening method chosen. Countries need the right mix of approaches according to the epidemiological profile, affordability and organizational feasibility.  相似文献   
3.
Binding of the membrane phospholipid phosphatidylinositol 3,4,5-trisphosphate (PIP3) to the Pleckstrin Homology (PH) domain of the Tec family protein tyrosine kinase, Inducible T cell Kinase (ITK), is critical for the recruitment of the kinase to the plasma membrane and its co-localization with the TCR-CD3 molecular complex. Three aromatic residues, termed the FYF motif, located in the inner walls of the phospholipid-binding pocket of the ITK PH domain, are conserved in the PH domains of all Tec kinases, but not in other PH-domain containing proteins, suggesting an important function of the FYF motif in the Tec kinase family. However, the biological significance of the FYF amino acid motif in the ITK-PH domain is unknown. To elucidate it, we have tested the effects of a FYF triple mutant (F26S, Y90F, F92S), henceforth termed FYF-ITK mutant, on ITK function. We found that FYF triple mutation inhibits the TCR-induced production of IL-4 by impairing ITK binding to PIP3, reducing ITK membrane recruitment, inducing conformational changes at the T cell-APC contact site, and compromising phosphorylation of ITK and subsequent phosphorylation of PLCγ1. Interestingly, however, the FYF motif is dispensable for the interaction of ITK with two of its signaling partners, SLP-76 and LAT. Thus, the FYF mutation uncouples PIP3-mediated ITK membrane recruitment from the interactions of the kinase with key components of the TCR signalosome and abrogates ITK function in T cells.  相似文献   
4.
BackgroundThe timing of the biannual WHO influenza vaccine composition selection and production cycle has been historically directed to the influenza seasonality patterns in the temperate regions of the northern and southern hemispheres. Influenza activity, however, is poorly understood in the tropics with multiple peaks and identifiable year-round activity. The evidence-base needed to take informed decisions on vaccination timing and vaccine formulation is often lacking for the tropics and subtropics. This paper aims to assess influenza seasonality in the tropics and subtropics. It explores geographical grouping of countries into vaccination zones based on optimal timing of influenza vaccination.MethodsInfluenza seasonality was assessed by different analytic approaches (weekly proportion of positive cases, time series analysis, etc.) using FluNet and national surveillance data. In case of discordance in the seasonality assessment, consensus was built through discussions with in-country experts. Countries with similar onset periods of their primary influenza season were grouped into geographical zones.ResultsThe number and period of peak activity was ascertained for 70 of the 138 countries in the tropics and subtropics. Thirty-seven countries had one and seventeen countries had two distinct peaks. Countries near the equator had secondary peaks or even identifiable year-round activity. The main influenza season in most of South America and Asia started between April and June. The start of the main season varied widely in Africa (October and December in northern Africa, April and June in Southern Africa and a mixed pattern in tropical Africa). Eight “influenza vaccination zones” (two each in America and Asia, and four in Africa and Middle East) were defined with recommendations for vaccination timing and vaccine formulation. The main limitation of our study is that FluNet and national surveillance data may lack the granularity to detect sub-national variability in seasonality patterns.ConclusionDistinct influenza seasonality patterns, though complex, could be ascertained for most countries in the tropics and subtropics using national surveillance data. It may be possible to group countries into zones based on similar recommendations for vaccine timing and formulation.  相似文献   
5.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号