首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   92篇
  免费   3篇
  国内免费   1篇
  2022年   1篇
  2021年   1篇
  2019年   1篇
  2018年   2篇
  2017年   2篇
  2016年   1篇
  2015年   3篇
  2014年   11篇
  2013年   6篇
  2012年   3篇
  2011年   3篇
  2010年   3篇
  2009年   6篇
  2008年   3篇
  2007年   5篇
  2006年   4篇
  2005年   3篇
  2004年   6篇
  2003年   5篇
  2002年   1篇
  2001年   6篇
  2000年   1篇
  1999年   3篇
  1998年   3篇
  1997年   2篇
  1995年   1篇
  1993年   1篇
  1992年   2篇
  1990年   2篇
  1988年   1篇
  1983年   1篇
  1982年   2篇
  1981年   1篇
排序方式: 共有96条查询结果,搜索用时 15 毫秒
1.
2.
Topology and structure of the C1q-binding site on C-reactive protein   总被引:10,自引:0,他引:10  
The host defense functions of human C-reactive protein (CRP) depend to a great extent on its ability to activate the classical complement pathway. The aim of this study was to define the topology and structure of the CRP site that binds C1q, the recognition protein of the classical pathway. We have previously reported that residue Asp(112) of CRP plays a major role in the formation of the C1q-binding site, while the neighboring Lys(114) hinders C1q binding. The three-dimensional structure of CRP shows the presence of a deep, extended cleft in each protomer on the face of the pentamer opposite that containing the phosphocholine-binding sites. Asp(112) is part of this marked cleft that is deep at its origin but becomes wider and shallower close to the inner edge of the protomer and the central pore of the pentamer. The shallow end of the pocket is bounded by the 112-114 loop, residues 86-92 (the inner loop), the C terminus of the protomer, and the C terminus of the pentraxin alpha-helix 169-176, particularly Tyr(175). Mutational analysis of residues participating in the formation of this pocket demonstrates that Asp(112) and Tyr(175) are important contact residues for C1q binding, that Glu(88) influences the conformational change in C1q necessary for complement activation, and that Asn(158) and His(38) probably contribute to the correct geometry of the binding site. Thus, it appears that the pocket at the open end of the cleft is the C1q-binding site of CRP.  相似文献   
3.
The ovine stifle joint is a promising animal model for investigation of joint mechanobiology. A method for in vivo measurement of dynamic 3-D kinematics of the ovine stifle joint is described (accuracy: 0.36 +/- 0.39 mm). Inter-subject variability in kinematics is greater than both intra-subject and inter-session variability. For future studies in which joint kinematics are measured prior to and following controlled orthopaedic interventions, pooling of data should be avoided and each subject should act as its own control.  相似文献   
4.
Experimental observations suggest that during a ligament tensile strain test, water and glycosaminoglycans are exuded. Many attempts have been tried to model this behaviour using continuum mechanics. We have investigated this unique behaviour and have established three mechanisms which may contribute to the experimental observations: the slackness of the fibres before stretching can lead to a decrease in volume upon straightening; a Poisson's ratio higher than 0.5 from the axial to the lateral direction (as recorded in the literature [Hewitt, J., Guilak, F., Glisson, R. and Parker Vail, T. (2001) "Regional material properties of the human hip joint capsule ligaments", Journal of Orthopaedic Research 19(3), 359-364]) due to the very high level of anisotropy of the tissue; and an osmotic pressure, with a certain level of anisotropy, that causes the swelling of the tissue before loading [Thornton, G.M., Shrive, N.G. and Frank, C.B. (2001) "Altering ligament water content affects ligament pre-stress and creep behaviour", Journal of Orthopaedic Research 19(5), 845-851]. There may be other mechanisms that also contribute in the observed fluid exudation on tensile loading.  相似文献   
5.
Although alterations in knee joint loading resulting from injury have been shown to influence the development of osteoarthritis, actual in vivo loading conditions of the joint remain unknown. A method for determining in vivo ligament loads by reproducing joint specific in vivo kinematics using a robotic testing apparatus is described. The in vivo kinematics of the ovine stifle joint during walking were measured with 3D optical motion analysis using markers rigidly affixed to the tibia and femur. An additional independent single degree of freedom measuring device was also used to record a measure of motion. Following sacrifice, the joint was mounted in a robotic/universal force sensor test apparatus and referenced using a coordinate measuring machine. A parallel robot configuration was chosen over the conventional serial manipulator because of its greater accuracy and stiffness. Median normal gait kinematics were applied to the joint and the resulting accuracy compared. The mean error in reproduction as determined by the motion analysis system varied between 0.06 mm and 0.67 mm and 0.07 deg and 0.74 deg for the two individual tests. The mean error measured by the independent device was found to be 0.07 mm and 0.83 mm for the two experiments, respectively. This study demonstrates the ability of this system to reproduce in vivo kinematics of the ovine stifle joint in vitro. The importance of system stiffness is discussed to ensure accurate reproduction of joint motion.  相似文献   
6.
Obtaining accurate values of joint tissue loads in human subjects and animals in vivo requires exact 3D-reproduction of joint kinematics and comparisons of in vivo motions between subjects and animals, and also necessitates an accurate reference position. For the knee, passive flexion-extension of isolated joints by hand has been assumed to produce bony motions similar to those of normal gait. We hypothesized that passive flexion-extension kinematics would not accurately reproduce in vivo gait, and, further, that such kinematics would vary significantly between testers. In vivo gait motions of four ovine stifle joints were measured in six degrees of freedom, as were passive flexion-extension motions after sacrifice. Passive flexion-extension motions were performed by three testers on the same stifle joints used in vitro. Results showed statistically significant differences in all degrees of freedom, with the largest differences in the proximal-distal and internal-external directions. Differences induced by muscle loads and kinetic factors in vivo were most evident during stance and hoof-off phases of gait. The in vitro passive paths generated by hand created motions with large variability both between and within individual testers. The user dependence and "area" of motion of passive flexion-extension indicates that passive flexion-extension is contained in a volume of motion, rather than constrained to a unique path. The assumption that the passive path has relevance to precise bone positions during normal in vivo gait is not supported by these results. Thus, using passive flexion-extension as a reference between joints may introduce large motion variability in the observed outcome, and large potential errors in determining joint tissue loads.  相似文献   
7.
8.
9.

Background  

This paper introduces the notion of optimizing different norms in the dual problem of support vector machines with multiple kernels. The selection of norms yields different extensions of multiple kernel learning (MKL) such as L , L 1, and L 2 MKL. In particular, L 2 MKL is a novel method that leads to non-sparse optimal kernel coefficients, which is different from the sparse kernel coefficients optimized by the existing L MKL method. In real biomedical applications, L 2 MKL may have more advantages over sparse integration method for thoroughly combining complementary information in heterogeneous data sources.  相似文献   
10.
The Indian black berry (Syzygium cumini Skeels) has a great nutraceutical and medicinal properties. As in other fruit crops, the fruit characteristics are important attributes for differentiation were also determined for different accessions of S. cumini. The fruit weight, length, breadth, length: breadth ratio, pulp weight, pulp content, seed weight and pulp: seed ratio significantly varied in different accessions. Molecular characterization was carried out using PCR based RAPD technique. Out of 80 RAPD primers, only 18 primers produced stable polymorphisms that were used to examine the phylogenetic relationship. A sum of 207 loci were generated out of which 201 loci found polymorphic. The average genetic dissimilarity was 97 per cent among jamun accessions. The phylogenetic relationship was also determined by principal coordinates analysis (PCoA) that explained 46.95 per cent cumulative variance. The two-dimensional PCoA analysis showed grouping of the different accessions that were plotted into four sub-plots, representing clustering of accessions. The UPGMA (r = 0.967) and NJ (r = 0.987) dendrogram constructed based on the dissimilarity matrix revealed a good degree of fit with the cophenetic correlation value. The dendrogram grouped the accessions into three main clusters according to their eco-geographical regions which given useful insight into their phylogenetic relationships.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号