首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13篇
  免费   1篇
  2017年   1篇
  2015年   1篇
  2014年   2篇
  2013年   1篇
  2012年   2篇
  2010年   2篇
  2009年   2篇
  2007年   2篇
  2002年   1篇
排序方式: 共有14条查询结果,搜索用时 15 毫秒
1.
Sexually dimorphic characters have two-fold complexities in pattern formation as they have to get input from both somatic sex determination as well as the positional determining regulators. Sex comb development in Drosophila requires functions of the somatic sex-determining gene doublesex and the homeotic gene Sex combs reduced. Attempts have not been made to decipher the role of dsx in imparting sexually dimorphic expression of SCR and the differential function of sex-specific variants of dsx products in sex comb development. Our results in this study indicate that male-like pattern of SCR expression is independent of dsx function, and dsx F must be responsible for bringing about dimorphism in SCR expression, whereas dsx M function is required with Scr for the morphogenesis of sex comb.  相似文献   
2.

Background

Electrical storm (ES) is a life threatening emergency. There is little data available regarding acute outcome of ES.

Aims

The study aimed to analyze the acute outcome of ES, various treatment modalities used, and the factors associated with mortality.

Methods

This is a retrospective observational study involving patients admitted with ES at our centre between 1/1/2007 and 31/12/2013.

Results

41 patients (mean age 54.61 ± 12.41 years; 86.7% males; mean ejection fraction (EF) 44.51 ± 16.48%) underwent treatment for ES. Hypokalemia (14.63%) and acute coronary syndrome (ACS) (14.63%) were the commonest identifiable triggers. Only 9 (21.95%) patients already had an ICD implanted. Apart from antiarrhythmic drugs (100%), deep sedation (87.8%), mechanical ventilation (24.39%) and neuraxial modulation using left sympathetic cardiac denervation (21.95%) were the common treatment modalities used. Thirty-three (80.49%) patients could be discharged after a mean duration of 14.2 ± 2.31 days. Eight (19.5%) patients died in hospital. The mortality was significantly higher in those with EF < 35% compared to those with a higher EF (8 (42.11% vs 0 (0%), p = 0.03)). There was no significant difference in mortality between those with versus without a structural heart disease (8 (21.1% vs 0 (0%), p = 0.32)). Comparison of mortality an ACS with ES versus ES of other aetiologies (3 (50%) vs 5 (14.29) %, p = 0.076)) showed a trend towards significance.

Conclusion

With comprehensive treatment, there is reasonable acute survival rate of ES. Hypokalemia and ACS are the commonest triggers of ES. Patients with low EF and ACS have higher mortality.  相似文献   
3.
4.
Autophagy is an important catabolic process that delivers cytoplasmic material to the lysosome for degradation. Autophagy promotes cell survival by elimination of damaged organelles and proteins aggregates, as well as by facilitating bioenergetic homeostasis. Although autophagy has been considered a cell survival mechanism, recent studies have shown that autophagy can promote cell death. The core mechanisms that control autophagy are conserved between yeast and humans, but animals also possess genes that regulate autophagy that are not present in yeast. These regulatory differences may be explained by the need to control autophagy in a cell context-specific manner in multicellular animals, such as during cell survival and cell death. Autophagy was thought to be a bulk cytoplasmic degradation mechanism, but recent studies have shown that specific cargo is recruited for degradation. This suggests the possibility that either cell survival or death may be regulated by selective autophagic clearance of cytoplasmic material. Here we summarize the mechanisms that regulate autophagy and how they may contribute to cell survival and death.Autophagy (self-eating) is an evolutionarily conserved catabolic process that is used to deliver cytoplasmic materials, including organelles and proteins, to the lysosome for degradation. Three types of autophagy have been described, including macroautophagy, microautophagy, and chaperone-mediated autophagy (Mizushima and Komatsu 2011). Although macroautophagy involves the fusion of the double membrane autophagosome and lysosomes, microautophagy is poorly understood and thought to involve direct uptake of material by the lysosome via a process that appears similar to pinocytosis. By contrast, chaperone-mediated autophagy is a biochemical mechanism to import proteins into the lysosome; it depends on a signature sequence and interaction with protein chaperones. Here we will focus on macroautophagy (hereafter called autophagy) because of our knowledge of this process in cell survival and cell death.Autophagy was likely first observed when electron microscopy was used to observe “dense bodies” containing mitochondria in mouse kidneys (Clark 1957). Five years later, it was reported that rat hepatocytes exposed to glucagon possessed membrane-bound vesicles that were rich in mitochondria and endoplasmic reticulum (Ashford and Porter 1962). Almost simultaneously, it was shown that these membrane-bound vesicles contained lysosomal hydrolases (Novikoff and Essner 1962). In 1965 de Duve coined the term “autophagy” (Klionsky 2008).The delivery of cytoplasmic material to the lysosome by autophagy involves membrane formation and fusion events (Fig. 1). First an isolation membrane, also known as a phagophore, must be initiated from a membrane source known as the phagophore assembly site (PAS). de Duve suggested that the smooth endoplasmic reticulum could be the source of autophagosome membrane (de Duve and Wattiaux 1966), and subsequent studies have supported this possibility (Dunn 1990; Axe et al. 2008). Although controversial, mitochondria and plasma membrane could also supply membranes for the formation of the autophagosomes under different conditions (Hailey et al. 2010; Ravikumar et al. 2010). The elongating isolation membrane surrounds cargo that is ultimately enclosed in the double membrane autophagosome. Once the autophagosome is formed, it fuses with lysosomes (known as the vacuole in yeasts and plants) to form autolysosomes in which the cargo is degraded by lysosomal hydrolases. At this stage lysosomes must reform so that subsequent autophagy may occur (Yu et al. 2010).Open in a separate windowFigure 1.Macroautophagy (autophagy) delivers cytoplasmic cargo to lysosomes for degradation, and involves membrane formation and fusion. The isolation membrane is initiated from a membrane source known as the from the phagophore assembly site (PAS). The isolation membrane surrounds cargo, including organelles and proteins, to form a double membrane autophagosome. Autophagosomes fuse with lysosomes to form autolysosomes in which the cargo is degraded by lysosomal hydrolases.  相似文献   
5.
Autophagy has been implicated in both cell survival and programmed cell death (PCD), and this may explain the apparently complex role of this catabolic process in tumourigenesis. Our previous studies have shown that caspases have little influence on Drosophila larval midgut PCD, whereas inhibition of autophagy severely delays midgut removal. To assess upstream signals that regulate autophagy and larval midgut degradation, we have examined the requirement of growth signalling pathways. Inhibition of the class I phosphoinositide-3-kinase (PI3K) pathway prevents midgut growth, whereas ectopic PI3K and Ras signalling results in larger cells with decreased autophagy and delayed midgut degradation. Furthermore, premature induction of autophagy is sufficient to induce early midgut degradation. These data indicate that autophagy and the growth regulatory pathways have an important relationship during midgut PCD. Despite the roles of autophagy in both survival and death, our findings suggest that autophagy induction occurs in response to similar signals in both scenarios.  相似文献   
6.
BACKGROUND: The p16INK4A gene product halts cell proliferation by preventing phosphorylation of the Rb protein. The p16INK4a gene is often deleted in human glioblastoma multiforme, contributing to unchecked Rb phosphorylation and rapid cell division. We show here that transduction of the human p16INK4a cDNA using the pCL retroviral system is an efficient means of stopping the proliferation of the rat-derrived glioma cell line, C6, both in tissue culture and in an animal model. C6 cells were transduced with pCL retrovirus encoding the p16INK4a, p53, or Rb genes. These cells were analyzed by a colony formation assay. Expression of p16INK4a was confirmed by immunohistochemistry and Western blot analysis. The altered morphology of the p16-expressing cells was further characterized by the senescence-associated beta-galactosidase assay. C6 cells infected ex vivo were implanted by stereotaxic injection in order to assess tumor formation. RESULTS: The p16INK4a gene arrested C6 cells more efficiently than either p53 or Rb. Continued studies with the p16INK4a gene revealed that a large portion of infected cells expressed the p16INK4a protein and the morphology of these cells was altered. The enlarged, flat, and bi-polar shape indicated a senescence-like state, confirmed by the senescence-associated beta-galactosidase assay. The animal model revealed that cells infected with the pCLp16 virus did not form tumors. CONCLUSION: Our results show that retrovirus mediated transfer of p16INK4a halts glioma formation in a rat model. These results corroborate the idea that retrovirus-mediated transfer of the p16INK4a gene may be an effective means to arrest human glioma and glioblastoma.  相似文献   
7.
The aim of our study was to estimate the uncultured eubacterial diversity of a soil sample collected below a dead seal, Cape Evans, McMurdo, Antarctica by an SSU rDNA gene library approach. Our study by sequencing of clones from SSU rDNA gene library approach revealed high diversity in the soil sample from Antarctica. More than 50% of clones showed homology to Cytophaga-Flavobacterium-Bacteroides group; sequences also belonged to alpha, beta, gamma proteobacteria, Thermus-Deinococcus and high GC gram-positive group; Phylogenetic analysis of the SSU rDNA clones showed the presence of species belonging to Cytophaga spp., Vitellibacter vladivostokensis, Aequorivita lipolytica, Aequorivita crocea, Flavobacterium spp., Flexibacter sp., Subsaxibacter broadyi, Bacteroidetes, Roseobacter sp., Sphingomonas baekryungensis, Nitrosospira sp., Nitrosomonas cryotolerans, Psychrobacter spp., Chromohalobacter sp., Psychrobacter okhotskensis, Psychrobacter fozii, Psychrobacter urativorans, Rubrobacter radiotolerans, Marinobacter sp., Rubrobacteridae, Desulfotomaculum aeronauticum and Deinococcus sp. The presence of ammonia oxidizing bacteria in Antarctica soil was confirmed by the presence of the amoA gene. Phylogenetic analysis revealed grouping of clones with their respective groups.  相似文献   
8.
Folding of proteins entering the secretory pathway in mammalian cells frequently requires the insertion of disulfide bonds. Disulfide insertion can result in covalent linkages found in the native structure as well as those that are not, so‐called non‐native disulfides. The pathways for disulfide formation are well characterized, but our understanding of how non‐native disulfides are reduced so that the correct or native disulfides can form is poor. Here, we use a novel assay to demonstrate that the reduction in non‐native disulfides requires NADPH as the ultimate electron donor, and a robust cytosolic thioredoxin system, driven by thioredoxin reductase 1 (TrxR1 or TXNRD1). Inhibition of this reductive pathway prevents the correct folding and secretion of proteins that are known to form non‐native disulfides during their folding. Hence, we have shown for the first time that mammalian cells have a pathway for transferring reducing equivalents from the cytosol to the ER, which is required to ensure correct disulfide formation in proteins entering the secretory pathway.  相似文献   
9.
The role of Dpp and its inhibitors during eggshell patterning in Drosophila   总被引:1,自引:0,他引:1  
The Drosophila eggshell is patterned by the combined action of the epidermal growth factor [EGF; Gurken (Grk)] and transforming growth factor beta [TGF-beta; Decapentaplegic (Dpp)] signaling cascades. Although Grk signaling alone can induce asymmetric gene expression within the follicular epithelium, here we show that the ability of Grk to induce dorsoventral polarity within the eggshell strictly depends on Dpp. Dpp, however, specifies at least one anterior region of the eggshell in the absence of Grk. Dpp forms an anteriorposterior morphogen gradient within the follicular epithelium and synergizes with the dorsoventral gradient of Grk signaling. High levels of Grk and Dpp signaling induce the operculum, whereas lower levels of both pathways induce the dorsal appendages. We provide evidence that the crosstalk between both pathways occurs at least at two levels. First, Dpp appears to directly enhance the levels of EGF pathway activity within the follicular epithelium. Second, Dpp and EGF signaling collaborate in controlling the expression of Dpp inhibitors. One of these inhibitors is Drosophila sno (dSno), a homolog of the Ski/Sno family of vertebrate proto-oncogenes, which synergizes with daughters against dpp and brinker to set the posterior and lateral limits of the region, giving rise to dorsal follicle cells.  相似文献   
10.

Background  

Oxidative stress induced by the production of reactive oxygen species may play a critical role in the stimulation of HIV replication and the development of immunodeficiency. This study was conducted as there are limited and inconclusive studies on the significance of a novel early marker of oxidative stress which can reflect the total antioxidant capacity in HIV patients,  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号