首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2796篇
  免费   82篇
  国内免费   1篇
  2879篇
  2022年   17篇
  2021年   27篇
  2020年   24篇
  2019年   29篇
  2018年   30篇
  2017年   34篇
  2016年   49篇
  2015年   85篇
  2014年   84篇
  2013年   155篇
  2012年   170篇
  2011年   151篇
  2010年   93篇
  2009年   89篇
  2008年   144篇
  2007年   135篇
  2006年   117篇
  2005年   160篇
  2004年   124篇
  2003年   132篇
  2002年   129篇
  2001年   57篇
  2000年   62篇
  1999年   51篇
  1998年   36篇
  1997年   38篇
  1996年   29篇
  1995年   33篇
  1994年   26篇
  1993年   30篇
  1992年   40篇
  1991年   28篇
  1990年   41篇
  1989年   30篇
  1988年   30篇
  1987年   25篇
  1986年   31篇
  1985年   40篇
  1984年   36篇
  1983年   23篇
  1982年   27篇
  1981年   17篇
  1980年   15篇
  1979年   13篇
  1978年   12篇
  1977年   16篇
  1975年   12篇
  1974年   17篇
  1972年   11篇
  1967年   10篇
排序方式: 共有2879条查询结果,搜索用时 0 毫秒
1.
In many seed species, the major source of HCN evolved during water imbibition is cyanogenic glycosides. The present investigation was performed to elucidate the role of endogenous cyanogenic glycosides in the control of seed germination and to examine the involvment of β-glucosidase in this process. All seed species used here contained some activities of β-glucosidase already in the dry state before imbibition. in the decreasing order of Malus pumila, Daucus carota, Hordeum vulgare, Chenopodium album and so on. β-Gluosidase activity in upper and lower seeds of cocklebur (Xanthium pennsylvanicum Wallr.) decreased with imbibition, and in lower seeds the activity disappeared when they germinated. On the contrary, in caryopses of rice (Oryza sativa L. cv. Sasanishiki) β-glucosidase increased during imbibition, and this increase continued even after germination. β-Glucosidase in cocklebur seeds was more active in the axial than in the cotyledonary tissue. Amygdalin, prunasin and linamarin could all serve as substrattes for the β-glucosidase(s) from both cocklebur and rice. Amygdalin, prunasin and linamarin as well as KCN, were effective in stimulating the germination of upper cocklebur seeds. The seeds evolved much more free HCN gas when they were exposed to the cyanogenic glycosides than when the glycosides were absent. Moreover, the application of the cyanogenic glycosides or of KCN caused accumulation of bound HCN in the seeds. Carbon monoxide, which stimulated cocklebur seed germination only slightly, did not cause accumulation of bound HCN. We suggest that a balance between the cytochrome and the alternative respiration pathways, which is adequate for germination (Esashi et al. 1987. Plant Cell Physiol. 28: 141–150), may be brought about by the action of endogenous HCN; a large portion of which is liberated from cyanogenic glycosides via the action of β-glucosidase. In addition to the partial suppression of the cytochrome path and unlike carbon monoxide, the HCN thus produced may act to supply cyanide group(s) to unknown compounds necessary for germination.  相似文献   
2.
The relationship between cell size, [3H]thymidine incorporation capacity, and cell surface property of human diploid fibroblasts was investigated using the concanavalin A (ConA)-mediated red blood cell (RBC) adsorption assay. Small cells in late passage populations adsorbed RBCs well with the RBC coating method (in which ConA-coated RBCs are adsorbed to fibroblasts) as did large cells of this population, while small cells in early passage populations did not. The RBC adsorption capacity of rapidly dividing cells with this method differed among young, middle-aged and old cell populations. The results suggest that temporal cell size and [3H]thymidine incorporating capacity is not a measure of the division age of human diploid cells at the individual cell level. On the other hand, RBC adsorption with the fibroblast coating method (in which RBCs are adsorbed to ConA-coated fibroblasts) occurred to non-dividing cells of the populations. Thus, the increase in RBC adsorption with this method is considered to be a reflection of the increase in non-dividing cells at phase III. Our results support the hypothesis that RBC adsorption with the RBC and fibroblast-coating methods represents a cell surface marker for division age and senescence of human diploid cells, respectively, at the individual cell level.  相似文献   
3.
Summary Platelet-rich plasma (PRP) has been used to promote periodontal regeneration following the premise that constituent transforming growth factor-β1 (TGF-β1) and platelet-derived growth factor-AB will stimulate cell proliferation at the site of application. In previous studies, we demonstrated that PRP mimics TGF-β1 to modulate proliferation in a cell type-specific manner, that fibrin clot formation by PRP upregulates type I collagen, and that an unidentified factor(s) in PRP increases alkaline phosphatase (ALP) activity in human periodontal ligament (PDL) cell cultures. We have now examined the effects of PRP on in vitro mineralization. Platelet-rich plasma and PDL cells were prepared from human adult volunteers or rats. After 20 d of continuous treatment with PRP in dexamethazone (Dex)-containing osteogenic medium, PRP time dependently promoted mineralization by rat PDL cells but failed to fully induce the osteoblastic phenotype. Furthermore, when human PDL cells were induced to increase ALP activity in osteogenic medium that lacked Dex, a condition that should delay (or suppress) osteoblastic differentiation, transmission electron microscopy revealed that mineralized spicules were initially deposited onto PRP-derived platelet aggregates. Taken together with our previous data, these findings suggest that PRP provides platelet aggregates as nuclei to initiate mineralization while stimulating PDL cell proliferation, differentiation, and collagen production. The combination of these effects may effectively mediate PRP's ability to promote regeneration of periodontal tissue, including skeletal tissue, at the site of injury.  相似文献   
4.
A nucleosome assembly protein (NAP-1) of Saccharomyces cerevisiae facilitates the association of histones with DNA to form nucleosomes in vitro at physiological ionic conditions. The cloned gene was expressed in Escherichia coli using a T7 expression system, and the protein (417 amino acid residues) was purified by Mono Q column chromatography. Various deletion fragments of NAP-1 protein were also produced, and their nucleosome assembly activity was examined by supercoiling assay. The internal fragment containing the residues 43-365 was necessary and sufficient for the activity, and a long stretch of negatively charged region near the carboxyl terminus was dispensable. This minimal size fragment could form the 12 S NAP-1-histone complex as the whole protein could, whereas deleted fragments on either side could bind with core histones only to form aggregates.  相似文献   
5.
6.
7.
We investigated the involvement of ClC-3 chloride channels in endosomal acidification by measurement of endosomal pH and chloride concentration [Cl-] in control versus ClC-3-deficient hepatocytes and in control versus ClC-3-transfected Chinese hamster ovary cells. Endosomes were labeled with pH or [Cl-]-sensing fluorescent transferrin (Tf), which targets to early/recycling endosomes, or alpha2-macroglobulin (alpha2M), which targets to late endosomes. In pulse label-chase experiments, [Cl-] was 19 mM just after internalization in alpha2M-labeled endosomes in primary cultures of hepatocytes from wild-type mice, increasing to 58 mM over 45 min, whereas pH decreased from 7.1 to 5.4. Endosomal acidification and [Cl-] accumulation were significantly impaired in hepatocytes from ClC-3 knock-out mice, with [Cl-] increasing from 16 to 43 mM and pH decreasing from 7.1 to 6.0. Acidification and Cl- accumulation were blocked by bafilomycin. In Tf-labeled endosomes, [Cl-] was 46 mM in wild-type versus 35 mM in ClC-3-deficient hepatocytes at 15 min after internalization, with corresponding pH of 6.1 versus 6.5. Approximately 4-fold increased Cl- conductance was found in alpha2M-labeled endosomes isolated from hepatocytes of wild-type versus ClC-3 null mice. In contrast, Golgi acidification was not impaired in ClC-3-deficient hepatocytes. In transfected Chinese hamster ovary cells expressing ClC-3A, endosomal acidification and [Cl-] accumulation were enhanced. [Cl-] in alpha2M-labeled endosomes was 42 mM (control) versus 53 mM (ClC-3A) at 45 min, with corresponding pH 5.8 versus 5.2; [Cl-] in Tf-labeled endosomes at 15 min was 37 mM (control) versus 49 mM (ClC-3A) with pH 6.3 versus 5.9. Our results provide direct evidence for involvement of ClC-3 in endosomal acidification by Cl- shunting of the interior-positive membrane potential created by the vacuolar H+ pump.  相似文献   
8.
The insulin/insulin-like growth factor (IGF) and the target of rapamycin (TOR) signaling pathways are known to regulate lifespan in diverse organisms. However, only a limited number of genes involved in these pathways have been examined regarding their effects on lifespan. Through a gain-of-function screen in Drosophila, we found that overexpression of the wdb gene encoding a regulatory subunit of PP2A, and overexpression of the lkb1 gene encoding a serine/threonine kinase, reduced organ size and extended lifespan. Overexpression of wdb also reduced the level of phosphorylated AKT, while overexpression of lkb1 increased the level of phosphorylated AMPK and decreased the level of phosphorylated S6K. Taken together, our results suggest that wdb- and lkb1-dependent lifespan extension is mediated by downregulation of S6K, a downstream component of the insulin/IGF and TOR signaling pathways.  相似文献   
9.
Cerulenin, an antifungal antibiotic isolated from a culture filtrate of Cephalosporium caerulens, is a potent inhibitor of fatty acid synthetase systems. This antibiotic specifically blocks the activity of β-ketoacyl thioester synthetase (condensing enzyme). The mechanism of the resistance of C. caerulens to cerulenin was investigated. The rate of growth in medium containing up to 100 gmg/ml cerulenin was as rapid as that in cerulenin-free medium. At a cerulenin concentration of 300 μg/ml, the rate of growth was still more than half that of the control. The addition of cerulenin (200 μg/ml) to a culture of growing cells has almost no effect on the incorporation of [14C]acetate into cellular lipids. Fatty acid synthetase was purified from C. caerulens to homogeneity. Properties of this fatty acid synthetase were almost the same as those of yeast fatty acid synthetase except for the sensitivity to cerulenin. C. caerulens synthetase is much less sensitive to cerulenin than fatty acid synthetases from other sources. These findings suggested that the insensitivity of C. caerulens fatty acid synthetase plays an important role in the cerulenin resistance of this fungus.  相似文献   
10.
    
The molecular structure of the carotenoid lactoside P457, (3S,5R,6R,3′S,5′R,6′S)‐13′‐cis‐5,6‐epoxy‐3′,5′‐dihydroxy‐3‐(β‐d ‐galactosyl‐(1→4)‐β‐d ‐glucosyl)oxy‐6′,7′‐didehydro‐5,6,7,8,5′,6′‐hexahydro‐β,β‐caroten‐20‐al, was confirmed by spectroscopic methods using Symbiodinium sp. strain NBRC 104787 cells isolated from a sea anemone. Among various algae, cyanobacteria, land plants, and marine invertebrates, the distribution of this unique diglycosyl carotenoid was restricted to free‐living peridinin‐containing dinoflagellates and marine invertebrates that harbor peridinin‐containing zooxanthellae. Neoxanthin appeared to be a common precursor for biosynthesis of peridinin and P457, although neoxanthin was not found in peridinin‐containing dinoflagellates. Fucoxanthin‐containing dinoflagellates did not possess peridinin or P457; green dinoflagellates, which contain chlorophyll a and b, did not contain peridinin, fucoxanthin, or P457; and no unicellular algae containing both peridinin and P457, other than peridinin‐containing dinoflagellates, have been observed. Therefore, the biosynthetic pathways for peridinin and P457 may have been coestablished during the evolution of dinoflagellates after the host heterotrophic eukaryotic microorganism formed a symbiotic association with red alga that does not contain peridinin or P457.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号