首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18196篇
  免费   1415篇
  国内免费   1350篇
  2024年   25篇
  2023年   192篇
  2022年   290篇
  2021年   975篇
  2020年   599篇
  2019年   735篇
  2018年   772篇
  2017年   618篇
  2016年   762篇
  2015年   1123篇
  2014年   1295篇
  2013年   1486篇
  2012年   1722篇
  2011年   1520篇
  2010年   927篇
  2009年   864篇
  2008年   967篇
  2007年   810篇
  2006年   755篇
  2005年   608篇
  2004年   541篇
  2003年   431篇
  2002年   429篇
  2001年   375篇
  2000年   314篇
  1999年   305篇
  1998年   195篇
  1997年   166篇
  1996年   152篇
  1995年   150篇
  1994年   154篇
  1993年   110篇
  1992年   115篇
  1991年   80篇
  1990年   84篇
  1989年   69篇
  1988年   72篇
  1987年   38篇
  1986年   41篇
  1985年   26篇
  1984年   28篇
  1983年   15篇
  1982年   10篇
  1981年   4篇
  1980年   3篇
  1979年   2篇
  1969年   1篇
  1949年   1篇
  1948年   1篇
  1933年   1篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
1.
The insulin receptor substrates (IRSs)-1-4 play important roles in signal transduction emanating from the insulin and insulin-like growth factor (IGF)-I receptors. IRS-4 is the most recently characterized member, which has been found primarily in human cells and tissues. It interacts with SH2-containing proteins such as phosphatidylinositol 3'-kinase (PI3K), Grb2, Crk-II, and CrkL. In this study, we transfected IRS-4 in mouse NIH-3T3 cells that overexpress IGF-I receptors. Clones expressing IRS-4 showed enhanced cellular proliferation when cells were cultured in 1% fetal bovine serum without added IGF-I. Addition of IGF-I enhanced cellular proliferation in cells overexpressing the IGF-I receptor alone but had an even greater proliferative effect in cells overexpressing both the IGF-I receptors and IRS-4. When etoposide and methylmethane sulfonate (MMS), both DNA damaging agents, were added to the cells, they uniformly induced cell cycle arrest. Fluorescence-activated cell sorter analysis demonstrated that the arrest of the cell cycle occurred at the G(1) checkpoint, and furthermore no significant degree of apoptosis was demonstrated with the use of either agent. In cells, overexpressing IGF-I receptors alone, IGF-I addition enhanced cellular proliferation, even in the presence of etoposide and MMS. In cells overexpressing IGF-I receptors and IRS-4, the effect of IGF-I in overcoming the cell cycle arrest was even more pronounced. These results suggest that IRS-4 is implicated in the IGF-I receptor mitogenic signaling pathway.  相似文献   
2.
Sucrose non-fermenting-1-related protein kinase-1 (SnRK1) plays an important role in metabolic regulation in plant. To understand the molecular mechanism of amino acids and carbohydrate metabolism in Malus hupehensis Rehd. var. pinyiensis Jiang (Pingyi Tiancha, PYTC), a full-length cDNA clone encoding homologue of SnRK1 was isolated from PYTC by Rapid Amplification of cDNA Ends (RACE). The clone, designated as MhSnRK1, contains 2063 nucleotides with an open reading frame of 1548 nucleotides. The deduced 515 amino acids showed high identities with other plant SnRK1 genes. Quantitative real-time PCR analysis revealed this gene was expressed in roots, stems and leaves. Exposing seedlings to nitrate caused and initial decrease in expression of the MhSnRK1 gene in roots, leaves and stems in short term. Ectopic expression of MhSnRK1 in tomato mainly resulted in higher starch content in leaf and red-ripening fruit than wild-type plants. This result supports the hypothesis that overexpression of SnRK1 causes the accumulation of starch in plant cells. All the results suggest that MhSnRK1 may play important roles in carbohydrate and amino acid metabolisms.  相似文献   
3.
  相似文献   
4.
Ba(2+) current through the L-type Ca(2+) channel inactivates essentially by voltage-dependent mechanisms with fast and slow kinetics. Here we found that slow inactivation is mediated by an annular determinant composed of hydrophobic amino acids located near the cytoplasmic ends of transmembrane segments S6 of each repeat of the alpha(1C) subunit. We have determined the molecular requirements that completely obstruct slow inactivation. Critical interventions include simultaneous substitution of A752T in IIS6, V1165T in IIIS6, and I1475T in IVS6, each preventing in additive manner a considerable fraction of Ba(2+) current from inactivation. In addition, it requires the S405I mutation in segment IS6. The fractional inhibition of slow inactivation in tested mutants caused an acceleration of fast inactivation, suggesting that fast and slow inactivation mechanisms are linked. The channel lacking slow inactivation showed approximately 45% of the sustained Ba(2+) or Ca(2+) current with no indication of decay. The remaining fraction of the current was inactivated with a single-exponential decay (pi(f) approximately 10 ms), completely recovered from inactivation within 100 ms and did not exhibit Ca(2+)-dependent inactivation properties. No voltage-dependent characteristics were significantly changed, consistent with the C-type inactivation model suggesting constriction of the pore as the main mechanism possibly targeted by Ca(2+) sensors of inactivation.  相似文献   
5.
Diabetic nephropathy (DN) as a global health concern is closely related to inflammation and oxidation. Isoliquiritigenin (ISL), a natural flavonoid compound, has been demonstrated to inhibit inflammation in macrophages. Herein, we investigated the effect of ISL in protecting against the injury in STZ-induced type 1 DN and in high glucose-induced NRK-52E cells. In this study, it was revealed that the administration of ISL not only ameliorated renal fibrosis and apoptosis, but also induced the deterioration of renal function in diabetic mice. Mediated by MAPKs and Nrf-2 signaling pathways, respectively, upstream inflammatory response and oxidative stress were neutralized by ISL in vitro and in vivo. Moreover, as further revealed by the results of molecular docking, sirtuin 1 (SIRT1) binds to ISL directly, and the involvement of SIRT1 in ISL-mediated renoprotective effects was confirmed by studies using in vitro models of SIRT1 overexpression and knockdown. In summary, by reducing inflammation and oxidative stress, ISL has a significant pharmacological effect on the deterioration of DN. The benefits of ISL are associated with the direct binding to SIRT1, the inhibition of MAPK activation, and the induction of Nrf-2 signaling, suggesting the potential of ISL for DN treatment.Subject terms: Pharmacology, Molecular biology  相似文献   
6.
7.
SUMO化是一种重要的蛋白质翻译后修饰,对植物正常生长发育不可或缺。到目前为止已筛选到上千个可能的SUMO底物,但由于SUMO化修饰水平普遍很低,其生物学功能研究相对较少。该文详细描述了检测蛋白SUMO化修饰的常用方法,包括体外和体内SUMO化实验,以及SUMO化修饰位点的检测方法,旨在为深入研究植物蛋白SUMO化修饰提供技术支持。  相似文献   
8.
9.
10.
In tumor metastasis, the margination and adhesion of tumor cells are two critical and closely related steps, which may determine the destination where the tumor cells extravasate to. We performed a direct three-dimensional simulation on the behaviors of the tumor cells in a real microvascular network, by a hybrid method of the smoothed dissipative particle dynamics and immersed boundary method (SDPD-IBM). The tumor cells are found to adhere at the microvascular bifurcations more frequently, and there is a positive correlation between the adhesion of the tumor cells and the wall-directed force from the surrounding red blood cells (RBCs). The larger the wall-directed force is, the closer the tumor cells are marginated towards the wall, and the higher the probability of adhesion behavior happen is. A relatively low or high hematocrit can help to prevent the adhesion of tumor cells, and similarly, increasing the shear rate of blood flow can serve the same purpose. These results suggest that the tumor cells may be more likely to extravasate at the microvascular bifurcations if the blood flow is slow and the hematocrit is moderate.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号