首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   83篇
  免费   8篇
  2023年   4篇
  2022年   1篇
  2021年   11篇
  2020年   3篇
  2018年   4篇
  2017年   3篇
  2016年   4篇
  2015年   4篇
  2014年   4篇
  2013年   6篇
  2012年   4篇
  2011年   7篇
  2010年   4篇
  2009年   3篇
  2008年   6篇
  2007年   3篇
  2006年   5篇
  2005年   3篇
  2004年   3篇
  2003年   1篇
  2002年   7篇
  1997年   1篇
排序方式: 共有91条查询结果,搜索用时 156 毫秒
1.
Moxifloxacin and ofloxacin are two broad-spectrum quinolone antibiotics. They are among the most widely used antibiotics, at this time, applied to control the COVID-19 pandemic. Hydroxychloroquine is an FDA-approved drug for the treatment of COVID-19. This work describes a simple, green, selective, and sensitive spectrofluorimetric method for the assay of moxifloxacin and ofloxacin in the presence of hydroxychloroquine, two co-administered mixtures used in the treatment of hospital-acquired pneumonia in patients with COVID-19. Simultaneous assay of hydroxychloroquine and moxifloxacin was carried out in methanol using a direct spectrofluorimetric method (method I) at 375 and 550 nm, respectively, after excitation at 300 nm. The direct spectrofluorimetric assay was rectilinear over concentration ranges 50.0–400.0 and 300.0–2500.0 ng/ml for hydroxychloroquine and moxifloxacin, respectively, with limits of detection (LOD) of 6.4 and 33.64 ng/ml and limits of quantitation (LOQ) of 19.4 and 102.6 ng/ml, respectively, for the two drugs. The assay for hydroxychloroquine and ofloxacin was carried out by measuring the first derivative synchronous amplitude for hydroxychloroquine at the zero crossing point of ofloxacin and vice versa at Δλ = 140 nm (method II). Hydroxychloroquine was measured at 266 nm, while ofloxacin was measured at 340 nm over the concentration range 4–40 ng/ml for hydroxychloroquine and 200–2000 ng/ml for ofloxacin with LOD of 0.467 and 25.3 ng/ml and LOQ of 1.42 and 76.6 ng/ml, respectively, for the two drugs. The two methods were validated following International Conference on Harmonization guidelines and were applied to the analysis of the two drugs in plasma with good percentage recoveries (109.73–93.17%).  相似文献   
2.
Pleiotrophin (PTN) is a growth factor with both pro-angiogenic and limited pro-tumorigenic activity. We evaluated the potential for PTN to be used for safe angiogenic gene therapy using the full length gene and a truncated gene variant lacking the domain implicated in tumorigenesis. Mouse myoblasts were transduced to express full length or truncated PTN (PTN or T-PTN), along with a LacZ reporter gene, and injected into mouse limb muscle and myocardium. In cultured myoblasts, PTN was expressed and secreted via the Golgi apparatus, but T-PTN was not properly secreted. Nonetheless, no evidence of uncontrolled growth was observed in cells expressing either form of PTN. PTN gene delivery to myocardium, and non-ischemic skeletal muscle, did not result in a detectable change in vascularity or function. In ischemic hindlimb at 14 days post-implantation, intramuscular injection with PTN-expressing myoblasts led to a significant increase in skin perfusion and muscle arteriole density. We conclude that (1) delivery of the full length PTN gene to muscle can be accomplished without tumorigenesis, (2) the truncated PTN gene may be difficult to use in a gene therapy context due to inefficient secretion, (3) PTN gene delivery leads to functional benefit in the mouse acute ischemic hindlimb model.  相似文献   
3.
Metastatic renal cell carcinoma (RCC) is one of the most treatment-resistant malignancies, and patients have a dismal prognosis, with a <10% five-year survival rate. The identification of markers that can predict the potential for metastases will have a great effect in improving patient outcomes. In this study, we used differential proteomics with isobaric tags for relative and absolute quantitation (iTRAQ) labeling and LC-MS/MS analysis to identify proteins that are differentially expressed in metastatic and primary RCC. We identified 1256 non-redundant proteins, and 456 of these were quantified. Further analysis identified 29 proteins that were differentially expressed (12 overexpressed and 17 underexpressed) in metastatic and primary RCC. Dysregulated protein expressions of profilin-1 (Pfn1), 14–3-3 zeta/delta (14–3-3ζ), and galectin-1 (Gal-1) were verified on two independent sets of tissues by means of Western blot and immunohistochemical analysis. Hierarchical clustering analysis showed that the protein expression profile specific for metastatic RCC can distinguish between aggressive and non-aggressive RCC. Pathway analysis showed that dysregulated proteins are involved in cellular processes related to tumor progression and metastasis. Furthermore, preliminary analysis using a small set of tumors showed that increased expression of Pfn1 is associated with poor outcome and is a potential prognostic marker in RCC. In addition, 14–3-3ζ and Gal-1 also showed higher expression in tumors with poor prognosis than in those with good prognosis. Dysregulated proteins in metastatic RCC represent potential prognostic markers for kidney cancer patients, and a greater understanding of their involved biological pathways can serve as the foundation of the development of novel targeted therapies for metastatic RCC.Renal cell carcinoma (RCC)1 is the most common neoplasm of the adult kidney. Worldwide incidence and mortality rates of RCC are rising each decade (1). Seventy-five percent of kidney tumors are of the clear cell (ccRCC) subtype (2). Although modern imaging techniques for abdominal screening have led to increased incidental detection of renal tumors (3), unfortunately ∼25% to 30% of patients still have metastases at presentation.The prognosis with RCC is quite variable. The greatest risk of recurrence following nephrectomy is within the first 3 to 5 years (4). The ability to predict which tumors will metastasize would have a significant effect on patient outcomes, because the likelihood of a favorable response to treatment is greater when the metastatic burden is limited, and surgical resection of a single or limited number of metastases can result in longer survival (5). Furthermore, ∼3% of patients will develop a second primary renal tumor, either synchronous or metachronous. Currently, patient prognosis is assessed based on histological parameters and a multivariate analysis developed at Memorial Sloan Kettering (6), but neither is sufficiently accurate. A more accurate assessment of prognosis is urgently needed to better guide patient management.Although surgery can be curative for localized disease, many patients eventually relapse. Metastatic RCC is one of the most treatment-resistant malignancies, with chemotherapy and radiotherapy having limited effect. The five-year survival rate for metastatic RCC is ≤10% (7). Although there has been much progress in RCC treatment with the new era of antiangiogenic therapy, the majority of patients ultimately suffer a relapse and die from progression of the cancer. A more in-depth understanding of the pathogenesis of metastasis will be a cornerstone in the development of new targeted therapies. A number of prognostic markers have previously been identified based on comparative analysis of primary and metastatic tumors, including C-reactive protein, tetraspanin 7, hypoxia-inducible factor 1 α, phos-S6, U3 small nucleolar ribonucleoprotein protein, carbonic anhydrase IX, and microvascular density (814). However, no biomarker has yet had an established clinical role independent of stage (15). Differential protein expression between primary RCC and normal tissues was previously studied (1618). Also, differential expression between primary and metastatic kidney disease has been investigated at the microRNA level (19, 20). Molecular analyses hold the promise of providing a better understanding of the pathogenesis of kidney cancer (21).In this study, we aimed to elucidate the pathogenesis of RCC metastasis through proteomic analysis and to identify potential prognostic markers for kidney cancer. We performed quantitative proteomic analysis using isobaric tags for relative and absolute quantitation (iTRAQ) labeling and LC-MS/MS to identify proteins that were dysregulated in metastatic RCC relative to primary RCC. Differential expressions of selected biologically interesting proteins—profilin-1 (Pfn1), 14–3-3 zeta/delta (14–3-3ζ), and galectin-1 (Gal-1)—were validated on two independent sets of tumors by means of western blot (WB) analysis and immunohistochemistry (IHC). Hierarchical clustering analysis showed that differential protein expression can distinguish between aggressive and non-aggressive tumors. In order to explore the role of these dysregulated proteins in tumor progression, we performed Gene Ontology (GO) and pathway analyses. In addition, we carried out a preliminary analysis to assess the potential of Pfn1, 14–3-3ζ, and Gal-1 as prognostic markers in RCC.  相似文献   
4.
5.
A simple and eco-friendly hydrothermal technique is used to prepare water soluble N- and S-co-doped carbon quantum dots probes (N,S-CQDs) from thiosemicarbazide and citric acid. Several characterization techniques were performed to ensure the successful synthesis of highly luminescent N,S-CQDs. The prepared probe exhibited analytical potential as an optical nanosensor for the spectrofluorimetric determination of cromolyn sodium (CRO) in its pharmaceutical dosage forms and aqueous humour. The emission intensity of the synthesized N,S-CQDs was measured at 411 nm after excitation at 345 nm. Addition of increasing concentrations of CRO to N,S-CQDs led to quenching of its fluorescence intensity. CRO was investigated within a wide concentration range 10.0–150.0 μM with a limit of detection of 2.0 μM and a limit of quantification of 6.0 μM. The quenching of fluorescent N,S-CQDs occurred through the inner filter effect (IFE). The developed spectrofluorimetric method was successfully optimized and validated according to the International Council of Harmonisation guidelines (ICH). The method greenness is proved through using both Eco-Scale and AGREE approaches.  相似文献   
6.
We previously identified pituitary tumor-derived fibroblast growth factor receptor 4 (ptd-FGFR4), an alternatively transcribed N-terminally truncated cytoplasmic receptor isoform. Unlike wild-type FGFR4, ptd-FGFR4 facilitates cell transformation and results in pituitary tumor formation in transgenic mice. To investigate differences in the tumorigenic properties of FGFR4 and ptd-FGFR4, we examined their abilities to modulate cell adhesiveness. Introduction of ptd-FGFR4 into GH4 pituitary cells or NIH 3T3 fibroblasts resulted in significant reduction in cell adhesion to a collagen IV matrix compared with FGFR4- or empty vector-transfected cells. This adhesive difference was evident in the absence or presence of FGF stimulation. Furthermore, treatment with beta1-integrin neutralizing antibody markedly reduced adhesiveness in FGFR4-transfected cells but had little effect on the depressed adhesiveness of ptd-FGFR4-transfected cells. Unlike wild-type FGFR4, ptd-FGFR4 does not associate with neural cell-adhesion molecule (NCAM). Cells expressing FGFR4 demonstrate membranous N-cadherin with a noninvasive growth pattern identical to control GH4 cells when injected into immunodeficient mice. In contrast, ptd-FGFR4-expressing cells develop invasive tumors in vivo with marked loss of N-cadherin that localizes to the cytoplasm. Consistent with these changes, beta-catenin expression was diminished and its interaction with N-cadherin was disrupted in the presence of ptd-FGFR4, but both were intact in the presence of wild-type FGFR4. These data highlight the importance of membrane-anchored FGFR4 in assembling a multiprotein FGFR4 complex with NCAM and N-cadherin playing pivotal functions in maintaining normal cell adhesion. Disruption of distinct NCAM/N-cadherin proadhesive complexes by a tumor-derived FGFR4 isoform provides a novel mechanism beyond ligand independence that explains the pathobiology of proliferative and infiltrative but nonmetastatic neoplasms.  相似文献   
7.
A rapid, simple, accurate and highly sensitive spectrofluorimetric method was developed for the simultaneous analysis of nebivolol hydrochloride (NEB) and amlodipine besylate (AML). The method was based on measuring the synchronous fluorescence intensity of the drugs at Δλ = 40 nm in methanol. Various experimental parameters affecting the synchronous fluorescence of the studied drugs were carefully studied and optimized. The calibration plots were rectilinear over concentration ranges of 0.05–1.5 µg/mL and 0.5–10 µg/mL for NEB and AML with limits of detection (LOD) of 0.010 and 0.051 µg/mL and limits of quantitation (LOQ) of 0.031 and 0.156, respectively. The peak amplitudes (2D) of the second derivative synchronous fluorimetry (SDSF) were estimated at 282 nm for NEB and at 393 nm for AML. Good linearity was obtained over the concentration ranges. The proposed method was successfully applied to the determination of the studied compounds in laboratory‐prepared mixtures, commercial single and laboratory‐prepared tablets. The results were in good agreement with those obtained using the comparison method. The mean percent recoveries were found to be 100.12 ± 0.77 and 99.91 ± 0.77 for NEB and AML, respectively. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
8.
Portal hypertension initiates a splenorenal reflex, whereby increases in splenic afferent nerve activity and renal sympathetic nerve activity cause a decrease in renal blood flow (RBF). We postulated that mesenteric vascular congestion similarly compromises renal function through an intestinal-renal reflex. The portal vein was partially occluded in anesthetized rats, either rostral or caudal to the junction with the splenic vein. Portal venous pressure increased (6.5 +/- 0.1 to 13.2 +/- 0.1 mmHg; n = 78) and mesenteric venous outflow was equally obstructed in both cases. However, only rostral occlusion increased splenic venous pressure. Rostral occlusion caused a fall in RBF (-1.2 +/- 0.2 ml/min; n = 9) that was attenuated by renal denervation (-0.5 +/- 0.1 ml/min; n = 6), splenic denervation (-0.2 +/- 0.1 ml/min; n = 11), celiac ganglionectomy (-0.3 +/- 0.1 ml/min; n = 9), and splenectomy (-0.5 +/- 0.1 ml/min; n = 6). Caudal occlusion induced a significantly smaller fall in RBF (-0.5 +/- 0.1 ml/min; n = 9), which was not influenced by renal denervation (-0.2 +/- 0.2 ml/min; n = 6), splenic denervation (-0.1 +/- 0.1 ml/min; n = 7), celiac ganglionectomy (-0.1 +/- 0.3 ml/min; n = 8), or splenectomy (-0.3 +/- 0.1 ml/min; n = 7). Renal arterial conductance fell only in intact animals subjected to rostral occlusion (-0.007 +/- 0.002 ml.min(-1).mmHg(-1)). This was accompanied by increases in splenic afferent nerve activity (15.0 +/- 3.5 to 32.6 +/- 6.2 spikes/s; n = 7) and renal efferent nerve activity (32.7 +/- 5.2 to 39.3 +/- 6.0 spikes/s; n = 10). In animals subjected to caudal occlusion, there were no such changes in renal arterial conductance or splenic afferent/renal sympathetic nerve activity. We conclude that the portal hypertension-induced fall in RBF is initiated by increased splenic, but not mesenteric, venous pressure, i.e., we did not find evidence for intestinal-renal reflex control of the kidneys.  相似文献   
9.
Umbilical cord blood (UCB) is of great interest as a source of stem cells for use in cellular therapies. The immunomodulatory effect of mesenchymal stem cells (MSCs) originating from bone marrow, adipose tissue and amniotic membrane has previously been reported. In this study, MSCs were isolated from UCB with the aim of evaluating their immunomodulatory effects on proliferation of PB lymphocytes by two different techniques; namely, 5‐bromo‐2‐deoxyuridine ELISA and a carboxy fluorescein diacetate succinimidyl ester flow cytometric technique. MSCs were isolated from UCB, propagated until Passage four, and then characterized for cell surface markers by flow cytometry and ability to differentiate towards osteocytes and adipocytes. Immunosuppressive effects on PB lymphocytes were examined by co‐culturing mitomycin C‐treated UCB MSCs with mitogen‐stimulated lymphocytes for 72 hr. Thereafter, proliferation of lymphocytes was detected by CFSE flow cytometry and colorimetric ELISA. The titers of cytokines in cell culture supernatant were also assayed to clarify possible mechanisms of immunomodulation. UCB MSCs suppressed mitogen‐stimulated lymphocyte proliferation, which occurs via both cell‐cell contact and cytokine secretion. Titers of transforming growth factor beta and IL 10 increased, whereas that of IFN‐γ decreased in the supernatants of co‐cultures. Thus, UCB MSCs suppress the proliferation of mitogen‐stimulated lymphocytes. However further in vivo studies are required to fully evaluate the immunomodulatory effects of UCB MSCs.  相似文献   
10.
Most organisms possess “biological chronometers” in the form of circadian clocks. Organism possessing circadian clock gains fitness advantage in two ways, by synchronizing its behavior through physiological process and secondly by coordinating its internal metabolic process. Environmental manipulations of circadian clocks have been shown to affect many life-history-related traits. Life-history traits are important components of fitness. To enhance individual fitness, organism has to synchronize the physiology with the surrounding environment. The present investigations were made to understand whether rhythm changes affect fitness of two co-existing species of montium a subgroup of Drosophila. The stocks were maintained at 20 ± 1 °C with 75% RH. Fitness such as fecundity, male lifetime fertility, female lifetime fertility, and longevity was assessed in LD (light/dark), LL (continuous light), and DD (continuous dark) for 15 and 30th generations. Fecundity was assessed in 25 pairs of flies for 20 days, and fertility and longevity was assessed in 10 pairs of flies until lifetime. The result revealed differential effect of light regimes on the two different species of Drosophila. Although the two species are related, effect of the three light regimes, LD, LL, and DD on them was different. It is evident that these two species although genetically related exhibit different responses to different light regimes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号