首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   27篇
  免费   3篇
  国内免费   2篇
  2022年   1篇
  2021年   3篇
  2020年   1篇
  2019年   1篇
  2017年   6篇
  2016年   4篇
  2015年   2篇
  2014年   3篇
  2013年   1篇
  2012年   4篇
  2007年   1篇
  2006年   2篇
  2004年   2篇
  1993年   1篇
排序方式: 共有32条查询结果,搜索用时 812 毫秒
1.
<正>Structural variations (SVs) are mutations with large-scale changes (generally50 bp) in the genome. SVs are major sources of the genetic diversity of organisms and thus are of high relevance to phenotype variations, gene dosage and evolutionary genetics. Except detecting SVs through comparative genetic analyses, dozens of software had been developed based on the alignment of short-reads to a single linear genome in the past decades (Guan and Sung, 2016).  相似文献   
2.
Lipolysis is primarily regulated by protein kinase A (PKA), which phosphorylates perilipin and hormone-sensitive lipase (HSL), and causes translocation of HSL from cytosol to lipid droplets in adipocytes. Perilipin coats lipid droplet surface and assumes to prevent lipase access to triacylglycerols, thus inhibiting basal lipolysis; phosphorylated perilipin facilitates lipolysis on PKA activation. Here, we induced lipolysis in primary rat adipocytes by inhibiting protein serine/threonine phosphatase with specific inhibitors, okadaic acid and calyculin. The incubation with calyculin promotes incorporation of 32Pi into perilipins, thus, confirming that perilipin is hyperphosphorylated. The lipolysis response to calyculin is gradually accompanied by increased accumulation of phosphorylated perilipin A in a concentration- and time-responsive manner. When perilipin phosphorylation is abrogated by the addition of N-ethylmaleimide, lipolysis ceases. Different from a considerable translocation of HSL upon PKA activation with isoproterenol, calyculin does not alter HSL redistribution in primary or differentiated adipocytes, as confirmed by both immunostaining and immunoblotting. Thus, we suggest that inhibition of the phosphatase by calyculin activates lipolysis via promoting perilipin phosphorylation rather than eliciting HSL translocation in adipocytes. Further, we show that when the endogenous phosphatase is inhibited by calyculin, simultaneous PKA activation with isoproterenol converts most of the perilipin to the hyperphosphorylated species, and induces enhanced lipolysis. Apparently, as PKA phosphorylates perilipin and stimulates lipolysis, the phosphatase acts to dephosphorylate perilipin and attenuate lipolysis. This suggests a two-step strategy governed by a kinase and a phosphatase to modulate the steady state of perilipin phosphorylation and hence the lipolysis response to hormonal stimulation.  相似文献   
3.
Dual roles of Atg8-PE deconjugation by Atg4 in autophagy   总被引:1,自引:0,他引:1  
Yu ZQ  Ni T  Hong B  Wang HY  Jiang FJ  Zou S  Chen Y  Zheng XL  Klionsky DJ  Liang Y  Xie Z 《Autophagy》2012,8(6):883-892
Modification of target molecules by ubiquitin or ubiquitin-like (Ubl) proteins is generally reversible. Little is known, however, about the physiological function of the reverse reaction, deconjugation. Atg8 is a unique Ubl protein whose conjugation target is the lipid phosphatidylethanolamine (PE). Atg8 functions in the formation of double-membrane autophagosomes, a central step in the well-conserved intracellular degradation pathway of macroautophagy (hereafter autophagy). Here we show that the deconjugation of Atg8-PE by the cysteine protease Atg4 plays dual roles in the formation of autophagosomes. During the early stage of autophagosome formation, deconjugation releases Atg8 from non-autophagosomal membranes to maintain a proper supply of Atg8. At a later stage, the release of Atg8 from intermediate autophagosomal membranes facilitates the maturation of these structures into fusion-capable autophagosomes. These results provide new insights into the functions of Atg8-PE and its deconjugation.  相似文献   
4.
In mammalian cells, lipid storage droplets contain a triacylglycerol and cholesterol ester core surrounded by a phospholipid monolayer into which a number of proteins are imbedded. These proteins are thought to be involved in modulating the formation and metabolic functions of the lipid droplet. In this study, we show that heat stress upregulates several heat shock proteins (Hsps), including Hsp27, Hsp60, Hsp70, Hsp90, and Grp78, in primary and differentiated adipocytes. Immunostaining and immunoblotting data indicate that among the Hsps examined, only Hsp70 is induced to redirect to the lipid droplet surface in heat-stressed adipocytes. The thermal induction of Hsp70 translocation to lipid droplet does not typically happen in a temperature- or time-dependent manner and occurs abruptly at 30-40 min and rapidly achieves a steady state within 60 min after 40 degrees C stress of adipocytes. Though Hsp70 is co-localized with perilipin on the lipid droplets in stressed adipocytes, immunoprecipitation experiments suggest that Hsp70 does not directly interact with perilipin. Alkaline treatments indicate that Hsp70 associates with the droplet surface through non-hydrophobic interactions. We speculate that Hsp70 might noncovalently associate with monolayer microdomains of the lipid droplet in a manner similar to its interaction with lipid bilayer moieties composed of specific fatty acids. As an acute and specific cellular response to the heat stimulation, accumulation of Hsp70 on adipocytes lipid droplets might be involved in stabilizing the droplet monolayer, transferring nascent proteins to the lipid droplets, or chaperoning denatured proteins on the droplet for subsequent refolding.  相似文献   
5.
为探究多花水仙ACS基因的序列特征及功能,以‘云香’水仙盛花期花瓣为试验材料,根据‘云香’水仙花朵转录组数据信息,通过RT-PCR方法克隆出1个ACS基因,命名为NtACS1(GenBank KX082936);NtACS1开放阅读框(ORF)长度为552bp,编码183个氨基酸。编码蛋白质分子量约为20.6KDa,理论等电点为6.30,不稳定系数为65.49,属于不稳定的疏水性蛋白。通过qRT-PCR对‘云香’水仙不同时期花瓣和副冠中的NtACS1基因进行了表达分析,得到与‘云香’水仙花朵转录组数据中相同的结果:NtACS1基因在‘云香’水仙花瓣和副冠中的表达都是随着花衰老过程呈现逐渐下降的趋势,且NtACS1基因在花瓣和副冠中的表达峰值都在花苞期,表明NtACS1基因编码的蛋白是在乙烯生物合成途径的系统1发挥催化作用的ACC合成酶。成功构建了NtACS1基因的正义植物表达载体,并通过农杆菌介导法获得8株转基因烟草,PCR和RT-PCR检测显示其中有6株为阳性植株,初步证实NtACS1基因已导入烟草基因组中且在烟草中已表达。该研究结果为进一步分析NtACS1基因的功能和后续转化水仙延长其花期研究奠定了基础。  相似文献   
6.
A selective protein sensor for heparin detection   总被引:1,自引:0,他引:1  
No clinical assays for the direct detection of heparin in blood exist. To create a heparin sensor, the hyaluronan (HA)-binding domain (HABD) of a protein that binds heparin and HA was engineered. GST fusion proteins containing one to three HABD modules were cloned, expressed, and purified. The affinities of each construct for heparin and for HA were determined by a competitive enzyme-linked immunosorbent assay using immobilized HA or heparin. Each of the constructs showed modest affinity for immobilized HA. However, heparin was 100-fold more potent than HA as a competing ligand. With immobilized heparin, affinity increased as the HABD copy number increased. The three-copy construct, GST-HB3, detected unfractionated free heparin (UFH) as low as 39ng/ml (equivalent to approximately 0.1U/ml) with a signal-to-noise ratio of 5.6. GST-HB3 also showed 100-fold selectivity for heparin in preference to other glycosaminoglycans. The plot of logKd vs log [Na+] showed 2.5 ionic interactions per heparin-HB3 interaction. GST-HB3 showed a linear detection of both UFH (15kDa) and low-molecular-weight heparin (LMWH; 6kDa) added to human plasma. For UFH, the range examined was 78 to over 2000ng/ml (equivalent to 0.2 to 5.0U/ml). For LMWH, the useful range was 312 to over 2000ng/ml. The coefficient of variance for the assay was < 9% for six serial heparin dilutions and <12% for three plasma samples. In clinical use, GST-HB3 could accurately measure therapeutic heparin levels in plasma (0.2 to 2U/ml).  相似文献   
7.
Photoreceptors project from the outer retinal surface into a specialized glycocalyx, the interphotoreceptor matrix (IPM), which contains hyaluronan (HA) and two novel proteoglycans, Spacr and Spacrcan. This matrix must be stable enough to function in the attachment of the retina to the outer eye wall yet porous enough to allow movement of metabolites between these tissues. How this matrix is organized is not known. HA is a potential candidate in IPM organization since biochemical studies show that these proteoglycans bind HA. RHAMM (receptor for HA-mediated motility)-type HA binding motifs (HABMs) are present in their deduced amino acid sequence and may be the sites of this HA interaction. To test this hypothesis, we subcloned three fragments of mouse Spacrcan that contain the putative HABMs. We found that each recombinant fragment binds HA. Binding decreased when residues in the HABMs were mutated. This provides direct evidence that the RHAMM-type HABMs in Spacrcan are involved in hyaluronan binding. Since chondroitin sulfate and heparan sulfate proteoglycans are important for retinal development and function, we also evaluated the binding of these recombinant proteins to heparin and chondroitin sulfates, the glycosaminoglycan side chain of these proteoglycans. We found that each recombinant protein bound to both heparin and chondroitin sulfates. Binding to chondroitin sulfates involved these HABMs, because mutagenesis reduced binding. Binding to heparin was probably not mediated through these HABMs since heparin binding persisted following their mutagenesis. These studies provide the first evidence defining the sites of protein-carbohydrate interaction of molecules present in the IPM.  相似文献   
8.
9.
In autophagy, the double-membrane autophagosome delivers cellular components for their degradation in the lysosome. The conserved Ypt/Rab GTPases regulate all cellular trafficking pathways, including autophagy. These GTPases function in modules that include guanine-nucleotide exchange factor (GEF) activators and downstream effectors. Rab7 and its yeast homologue, Ypt7, in the context of such a module, regulate the fusion of both late endosomes and autophagosomes with the lysosome. In yeast, the Rab5-related Vps21 is known for its role in early- to late-endosome transport. Here we show an additional role for Vps21 in autophagy. First, vps21∆ mutant cells are defective in selective and nonselective autophagy. Second, fluorescence and electron microscopy analyses show that vps21∆ mutant cells accumulate clusters of autophagosomal structures outside the vacuole. Third, cells with mutations in other members of the endocytic Vps21 module, including the GEF Vps9 and factors that function downstream of Vps21, Vac1, CORVET, Pep12, and Vps45, are also defective in autophagy and accumulate clusters of autophagosomes. Finally, Vps21 localizes to PAS. We propose that the endocytic Vps21 module also regulates autophagy. These findings support the idea that the two pathways leading to the lysosome—endocytosis and autophagy—converge through the Vps21 and Ypt7 GTPase modules.  相似文献   
10.
The occurrence of PFD is closely related with elasticity, toughness, and functional changes of the connective tissue of the pelvic support tissue. This study aims to evaluate the effect of mechanical stretch on the differentiation of BMSCs with a co-culture with pelvic ligament fibroblasts. BMSCs was isolated and identified from 7 day SPF SD rats. Rat pelvic ligament fibroblasts were obtained from rat pelvic ligament. The fourth passage of fibroblasts was subjected to 10% deformation with 1 Hz, 12 h periodic one-way mechanical stretch stimulation, and the cells were then co-cultured with BMSCs. The longer co-culture and co-culture with mechanical stretch (i.e. 6 and 12 days) induced more expression of elastin, LOX, and Fibulin-5, compared to the groups without stimulation. Compared to co-culture group each, Co-culture with mechanical stretch stimulation group induced significant expression of elastin, LOX, and Fibulin-5, both in 3, 6 and 12 days co-culture groups (P < 0.05). However, there were no significant differences among 3, 6, and 12 days control groups. These results suggest that in an indirect co-culture system, pelvic ligament fibroblasts with mechanical stretch stimulation can promote BMSCs differentiation, reflecting in the increased expression of elastin, LOX, and Fibulin-5.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号