首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16篇
  免费   0篇
  2012年   2篇
  2011年   2篇
  2008年   3篇
  2007年   2篇
  2006年   1篇
  2005年   1篇
  2004年   3篇
  2003年   2篇
排序方式: 共有16条查询结果,搜索用时 218 毫秒
1.
We studied the peculiarities of permeability with respect to the main extracellular cations, Na+ and Ca2+, of cloned low-threshold calcium channels (LTCCs) of three subtypes, Cav3.1 (α1G), Cav3.2 (α 1H), and Cav3.3 (α1I), functionally expressed in Xenopus oocytes. In a calcium-free solution containing 100 mM Na+ and 5 mM calcium-chelating EGTA buffer (to eliminate residual concentrations of Ca2+) we observed considerable integral currents possessing the kinetics of inactivation typical of LTCCs and characterized by reversion potentials of −10 ± 1, −12 ± 1, and −18 ± 2 mV, respectively, for Cav3.1, Cav3.2, and Cav3.3 channels. The presence of Ca2+ in the extracellular solution exerted an ambiguous effect on the examined currents. On the one hand, Ca2+ effectively blocked the current of monovalent cations through cloned LTCCs (K d = 2, 10, and 18 μM for currents through channels Cav3.1, Cav3.2, and Cav3.3, respectively). On the other hand, at the concentration of 1 to 100 mM, Ca2+ itself functioned as a carrier of the inward current. Despite the fact that the calcium current reached the level of saturation in the presence of 5 mM Ca2+ in the external solution, extracellular Na+ influenced the permeability of these channels even in the presence of 10 mM Ca2+. The Cav3.3 channels were more permeable with respect to Na+ (P Ca/P Na ∼ 21) than Cav3.1 and Cav3.2 (P Ca/P Na ∼ 66). As a whole, our data indicate that cloned LTCCs form multi-ion Ca2+-selective pores, as these ions possess a high affinity for certain binding sites. Monovalent cations present together with Ca2+ in the external solution modulate the calcium permeability of these channels. Among the above-mentioned subtypes, Cav3.3 channels show the minimum selectivity with respect to Ca2+ and are most permeable for monovalent cations. Neirofiziologiya/Neurophysiology, Vol. 38, No. 3, pp. 183–192, May–June, 2006.  相似文献   
2.

Background

The Cavβ subunits of high voltage-activated Ca2+ channels control the trafficking and biophysical properties of the α1 subunit. The Cavβ-α1 interaction site has been mapped by crystallographic studies. Nevertheless, how this interaction leads to channel regulation has not been determined. One hypothesis is that βs regulate channel gating by modulating movements of IS6. A key requirement for this direct-coupling model is that the linker connecting IS6 to the α-interaction domain (AID) be a rigid structure.

Methodology/Principal Findings

The present study tests this hypothesis by altering the flexibility and orientation of this region in α12.2, then testing for Cavβ regulation using whole cell patch clamp electrophysiology. Flexibility was induced by replacement of the middle six amino acids of the IS6-AID linker with glycine (PG6). This mutation abolished β2a and β3 subunits ability to shift the voltage dependence of activation and inactivation, and the ability of β2a to produce non-inactivating currents. Orientation of Cavβ with respect to α12.2 was altered by deletion of 1, 2, or 3 amino acids from the IS6-AID linker (Bdel1, Bdel2, Bdel3, respectively). Again, the ability of Cavβ subunits to regulate these biophysical properties were totally abolished in the Bdel1 and Bdel3 mutants. Functional regulation by Cavβ subunits was rescued in the Bdel2 mutant, indicating that this part of the linker forms β-sheet. The orientation of β with respect to α was confirmed by the bimolecular fluorescence complementation assay.

Conclusions/Significance

These results show that the orientation of the Cavβ subunit relative to the α12.2 subunit is critical, and suggests additional points of contact between these subunits are required for Cavβ to regulate channel activity.  相似文献   
3.
4.
We analyzed the effects of nifedipine on a family of recombinant low-threshold Ca2+ channels functionally expressed in Xenopus oocytes and formed by three different subunits (1G, 1H, and 1I). The 1G and 1I channels demonstrated a low sensitivity to nifedipine even in high concentrations (IC50 = 98 and 243 M, maximum blocking intensity Amax = 25 and 47%, respectively). At the same time, the above agent effectively blocked channels formed by the 1H-subunit (IC50 = 5 M and Amax = 41%). The nifedipine-caused effects were voltage-dependent, and their changes depended on the initial state of the channel. In the case of 1G-subunits, the blockade was determined mostly by binding of nifedipine with closed channels, whereas in the cases of 1H- and 1I-subunits this resulted from binding of nifedipine with channels in the activated and inactivated states. The obtained data allow us to obtain estimates of the pharmacological properties of the above three subtypes of recombinant channels and, in the future, to compare these characteristics with the properties of low-threshold Ca2+ channels in native cells.  相似文献   
5.
In neurons of the rat thalamic nucl. lateralis dorsalis, we analyzed the effect of a well-known antihypertensive agent, nifedipine, on low-threshold Ca2+ channels that, according to their kinetics of activation, were classified as fast and slow subtypes. The transmembrane currents through the respective channels in freshly isolated neurons obtained from 14- to 17-day-old rats were measured using a patch-clamp technique in the whole-cell configuration. The fast component of the Ca2+ current demonstrated a higher sensitivity to nifedipine (Amax = 81%, IC50 = 22 M) than the slow component did (Amax = 51%, IC50 = 28 M). Nifedipine changed the activation and inactivation characteristics of the fast and slow current components, although in a different manner. Therefore, the affinity of nifedipine for the respective channels, which determine the above components, is different and depends on the functional state of such channels. The data obtained allow us to estimate in detail the pharmacological characteristics of the channels under study and to hypothesize on the mechanisms underlying interaction between nifedipine and channels of the above subtypes.  相似文献   
6.
7.
Studies of Parkinson's disease (PD) have been hindered by lack of access to affected human dopaminergic (DA) neurons. Here, we report generation of induced pluripotent stem cells that carry the p.G2019S mutation (G2019S-iPSCs) in the Leucine-Rich Repeat Kinase-2 (LRRK2) gene, the most common PD-related mutation, and their differentiation into DA neurons. The high penetrance of the LRRK2 mutation and its clinical resemblance to sporadic PD suggest that these cells could provide a valuable platform for disease analysis and drug development. We found that DA neurons derived from G2019S-iPSCs showed increased expression of key oxidative stress-response genes and α-synuclein protein. The mutant neurons were also more sensitive to caspase-3 activation and cell death caused by exposure to stress agents, such as hydrogen peroxide, MG-132, and 6-hydroxydopamine, than control DA neurons. This enhanced stress sensitivity is consistent with existing understanding of early PD phenotypes and represents a potential therapeutic target.  相似文献   
8.
Here, we describe a new mechanism by which glutamate (Glu) and trace metals reciprocally modulate activity of the Ca(v)2.3 channel by profoundly shifting its voltage-dependent gating. We show that zinc and copper, at physiologically relevant concentrations, occupy an extracellular binding site on the surface of Ca(v)2.3 and hold the threshold for activation of these channels in a depolarized voltage range. Abolishing this binding by chelation or the substitution of key amino acid residues in IS1-IS2 (H111) and IS2-IS3 (H179 and H183) loops potentiates Ca(v)2.3 by shifting the voltage dependence of activation toward more negative membrane potentials. We demonstrate that copper regulates the voltage dependence of Ca(v)2.3 by affecting gating charge movements. Thus, in the presence of copper, gating charges transition into the "ON" position slower, delaying activation and reducing the voltage sensitivity of the channel. Overall, our results suggest a new mechanism by which Glu and trace metals transiently modulate voltage-dependent gating of Ca(v)2.3, potentially affecting synaptic transmission and plasticity in the brain.  相似文献   
9.
10.
Voltage-gated Ca(2+) channels (VGCCs) are recognized for their superb ability for the preferred passage of Ca(2+) over any other more abundant cation present in the physiological saline. Most of our knowledge about the mechanisms of selective Ca(2+) permeation through VGCCs was derived from the studies on native and recombinant L-type representatives. However, the specifics of the selectivity and permeation of known recombinant T-type Ca(2+)-channel alpha1 subunits, Ca(v)3.1, Ca(v)3.2 and Ca(v)3.3, are still poorly defined. In the present study we provide comparative analysis of the selectivity and permeation Ca(v)3.1, Ca(v)3.2, and Ca(v)3.3 functionally expressed in Xenopus oocytes. Our data show that all Ca(v)3 channels select Ca(2+) over Na(+) by affinity. Ca(v)3.1 and Ca(v)3.2 discriminate Ca(2+), Sr(2+) and Ba(2+) based on the ion's effects on the open channel probability, whilst Ca(v)3.3 discriminates based on the ion's intrapore binding affinity. All Ca(v)3s were characterized by much smaller difference in the K(D) values for Na(+) current blockade by Ca(2+) (K(D1) approximately 6 microM) and for Ca(2+) current saturation (K(D2) approximately 2 mM) as compared to L-type channels. This enabled them to carry notable mixed Na(+)/Ca(2+) current at close to physiological Ca(2+) concentrations, which was the strongest for Ca(v)3.3, smaller for Ca(v)3.2 and the smallest for Ca(v)3.1. In addition to intrapore Ca(2+) binding site(s) Ca(v)3.2, but not Ca(v)3.1 and Ca(v)3.3, is likely to possess an extracellular Ca(2+) binding site that controls channel permeation. Our results provide novel functional tests for identifying subunits responsible for T-type Ca(2+) current in native cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号