首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   163篇
  免费   18篇
  2023年   1篇
  2021年   3篇
  2020年   4篇
  2019年   2篇
  2018年   2篇
  2017年   3篇
  2016年   3篇
  2015年   8篇
  2014年   9篇
  2013年   8篇
  2012年   15篇
  2011年   9篇
  2010年   9篇
  2009年   11篇
  2008年   14篇
  2007年   8篇
  2006年   11篇
  2005年   13篇
  2004年   10篇
  2003年   7篇
  2002年   6篇
  2000年   1篇
  1999年   2篇
  1998年   1篇
  1994年   1篇
  1992年   2篇
  1991年   3篇
  1988年   2篇
  1983年   1篇
  1982年   1篇
  1978年   1篇
  1977年   1篇
  1976年   1篇
  1972年   1篇
  1969年   1篇
  1968年   3篇
  1967年   1篇
  1943年   2篇
排序方式: 共有181条查询结果,搜索用时 15 毫秒
1.
Regulation of the matrix metalloproteinases (MMPs), the major mediators of extracellular matrix (ECM) degradation, is crucial to regulate ECM proteolysis, which is important in metastasis. This study examined the effects of 3 flavonoid-enriched fractions (a crude fraction, an anthocyanin-enriched fraction, and a proanthocyanidin-enriched fraction), which were prepared from lowbush blueberries (Vaccinium angustifolium), on MMP activity in DU145 human prostate cancer cells in vitro. Using gelatin gel electrophoresis, MMP activity was evaluated from cells after 24-hr exposure to blueberry fractions. All fractions elicited an ability to decrease the activity of MMP-2 and MMP-9. Of the fractions tested, the proanthocyanidin-enriched fraction was found to be the most effective at inhibiting MMP activity in these cells. No induction of either necrotic or apoptotic cell death was noted in these cells in response to treatment with the blueberry fractions. These findings indicate that flavonoids from blueberry possess the ability to effectively decrease MMP activity, which may decrease overall ECM degradation. This ability may be important in controlling tumor metastasis formation.  相似文献   
2.
3.
4.

Herbivorous fish are key to maintaining a balance between coral and algae on reefs, where reefs with greater herbivore biomass often show lower algal cover. For reefs worldwide, algal turf cover is expanding and is increasingly used as an indicator of disturbance. Water depth affects reef fish composition; thus, it may be expected that herbivory could also differ by depth. We examined relationships between algal turf cover and biomass (g m−2), density (# m−2) and size (cm) of herbivore groups (grazers, browsers and scrapers) across shallow (< 6 m), mid (6–18 m) and deep (18–30 m) coral reefs in the Main Hawaiian Islands. We find that across all depth classes, algal turf cover decreased with increasing grazer and scraper density, with steeper relationships observed at mid and deep reefs than in shallow reefs. In contrast, algal turf cover slightly increased with increasing grazer and browser biomass at deep reefs. Considering fish size, algal turf cover increased with larger grazer and scrapers at mid and deep reefs. The results indicate that herbivorous fish density, rather than biomass, is a better indicator of reductions in algal turf cover and resulting coral-algal balance on Hawaiian reefs, where smaller fish exert greater top-down control on cover than larger fish. Despite significant differences in herbivorous fish compositions, length-frequency distributions and fishing intensities across depth, algal turf cover remains similar across depths. Increases in fishing would have a disproportionately negative impact in deep than shallow reefs due to a lower overall fish density, where grazing functions in deep reefs are maintained by significantly fewer and smaller grazers and browsers, and larger scrapers, than in shallow reefs. Developing an understanding of patterns of algal turf herbivory by depth is important to understanding the spatial scale at which herbivory and regime shifts operate.

  相似文献   
5.
Globally, coral reefs are degrading due to a variety of stressors including climate change and pollution. Active restoration is an important effort for sustaining coral reefs where, typically, coral fragments are outplanted onto degraded reefs. Coral outplants, however, can experience mortality in response to a range of stressors. We pair results of outplant monitoring observations with satellite‐based measurements of multiple oceanographic variables to estimate the relative importance of each driver to coral outplant survival. We find that when considering mean environmental conditions experienced by outplants during the monitoring period, particulate organic carbon (POC) levels are most important in determining outplant survival, with certain levels of POC beneficial for outplants. Sea surface temperature anomalies (SSTA) are also important determinants of outplant survival, where survival is greatest in regions with minimal or slightly negative anomalies. Survival also increases with increasing distance to land, likely due to a reduction in negative ridge‐to‐reef effects on coral outplants. When considering the range (min–max) of environmental conditions experienced during the monitoring period, large fluctuations in photosynthetically active radiation (PAR) and POC are most important in determining outplant survival. Increasing outplant depth can help to counter the negative impacts of large fluctuations in environmental variables. We find that a variety of remotely sensed oceanographic variables have significant impacts on survival and should be considered in coral restoration planning to help evaluate potential restoration sites and ultimately maximize coral outplant survival.  相似文献   
6.
The fossil record provides direct empirical data for understanding macroevolutionary patterns and processes. Inherent biases in the fossil record are well known to confound analyses of this data. Sampling bias proxies have been used as covariates in regression models to test for such biases. Proxies, such as formation count, are associated with paleobiodiversity, but are insufficient for explaining species dispersal owing to a lack of geographic context. Here, we develop a sampling bias proxy that incorporates geographic information and test it with a case study on early tetrapodomorph biogeography. We use recently-developed Bayesian phylogeographic models and a new supertree of early tetrapodomorphs to estimate dispersal rates and ancestral habitat locations. We find strong evidence that geographic sampling bias explains supposed radiations in dispersal rate (potential adaptive radiations). Our study highlights the necessity of accounting for geographic sampling bias in macroevolutionary and phylogenetic analyses and provides an approach to test for its effect.  相似文献   
7.
Alaskan seals are found in remote and sometimes inaccessible locations, making it difficult to collect time‐series information. This study explores a novel method to examine temporal changes in diet and physiological status of ringed (Pusa hispida), spotted (Phoca largha), and harbor (Phoca vitulina) seals using cortisol concentrations and δ15N and δ13C stable isotopes (SIs) measured in serial sections of whiskers. As whiskers grow, whisker tissue is deposited sequentially making these measurements temporally aligned. Whisker cortisol presented in a distinct pattern with elevated concentrations at the root section followed by a curvilinear decline moving toward the tip of most whiskers. Comparing SIs at the root to the rest of the whiskers, δ13C values were slightly lower in ringed and harbor seal whiskers and δ15N values were slightly higher in harbor seal whiskers. The data were modeled controlling for the observed trends in cortisol concentrations and further associations between cortisol concentrations and SIs were detected in spotted and harbor seal whiskers. Additional research examining the source and stability of whisker cortisol is warranted. However, the methods presented here demonstrate that whiskers could prove valuable to gather long‐term and naturally aligned dietary and physiological information.  相似文献   
8.
Magnetite-producing magnetotactic bacteria collected from the oxic–anoxic transition zone of chemically stratified marine environments characterized by O2/H2S inverse double gradients, contained internal S-rich inclusions resembling elemental S globules, suggesting they oxidize reduced S compounds that could support autotrophy. Two strains of marine magnetotactic bacteria, MV-1 and MV-2, isolated from such sites grew in O2-gradient media with H2S or thiosulfate (S2O32–) as electron sources and O2 as electron acceptor or anaerobically with S2O32– and N2O as electron acceptor, with bicarbonate (HCO3)/CO2 as sole C source. Cells grown with H2S contained S-rich inclusions. Cells oxidized S2O32– to sulfate (SO42–). Both strains grew microaerobically with formate. Neither grew microaerobically with tetrathionate (S4O62–), methanol, or Fe2+ as FeS, or siderite (FeCO3). Growth with S2O32– and radiolabeled 14C-HCO3 showed that cell C was derived from HCO3/CO2. Cell-free extracts showed ribulose 1,5-bisphosphate carboxylase/oxygenase (RubisCO) activity. Southern blot analyses indicated the presence of a form II RubisCO (cbbM) but no form I (cbbL) in both strains. cbbM and cbbQ, a putative post-translational activator of RubisCO, were identified in MV-1. MV-1 and MV-2 are thus chemolithoautotrophs that use the Calvin–Benson–Bassham pathway. cbbM was also identified in Magnetospirillum magnetotacticum. Thus, magnetotactic bacteria at the oxic–anoxic transition zone of chemically stratified aquatic environments are important in C cycling and primary productivity.  相似文献   
9.
Naidu SL  Long SP 《Planta》2004,220(1):145-155
Miscanthus × giganteus (Greef & Deuter ex Hodkinson & Renvoize) is unique among C4 species in its remarkable ability to maintain high photosynthetic productivity at low temperature, by contrast to the related C4 NADP-malic enzyme-type species Zea mays L. In order to determine the in vivo physiological basis of this difference in photosynthesis, water vapor and CO2 exchange and modulated chlorophyll fluorescence were simultaneously monitored on attached leaf segments from plants grown and measured at 25/20°C or 14/11°C (day/night temperature). Analysis of the response of photosynthesis to internal CO2 concentration suggested that ribulose bisphosphate carboxylase/oxygenase (Rubisco) and/or pyruvate orthophosphate dikinase (PPDK) play a more important role in determining the response to low temperature than does phosphoenolpyruvate carboxylase (PEPc). For both species at both temperatures, the linear relationship between operating efficiency of whole-chain electron transport through photosystem II (PSII) and the efficiency of CO2 assimilation (CO2) was unchanged and had a zero intercept, suggesting the absence of non-photosynthetic electron sinks. The major limitation at low temperature could not be solely at Rubisco or at any other point in the Calvin cycle, since this would have increased leakage of CO2 to the mesophyll and increased PSII/CO2. This in vivo analysis suggested that maintenance of high photosynthetic rates in M. × giganteus at low temperature, in contrast to Z. mays, is most likely the result of different properties of Rubisco and/or PPDK, reduced susceptibility to photoinhibition, and the ability to maintain high levels of leaf absorptance during growth at low temperature.  相似文献   
10.
We have utilized growth factors in in vitro and in vivo systems to examine the role of cellular proliferation in reovirus replication. In vitro, proliferating RIE-1 cells can be infected with whole reovirus virions, but are relatively resistant to infection once confluent (Go arrest). It has been shown that TGF-alpha, which signals through the EGF-receptor (EGF-R), is capable of dramatically increasing the number of RIE-1 cells entering the S-phase in the presence of additional serum factors. Stimulation of the EGF-R without serum results in minimal increases in cells entering the S-phase with a restriction in reovirus replication. Therefore, other factors in serum are essential for fully permissive infection. In vivo, we used metallothionein (MT) promoter/enhancer-TGF-alpha transgenic mice to study the effect of cytokine activation on reovirus type 1 infection. Virus replication decreased following oral infection in these transgenic mice at 1 month of age, concordant with increased mucin production. Titers of reovirus obtained from the livers of 1 year old transgenic mice were approximately 10-fold higher than titers obtained in control mice. Taken together, these data indicate that while growth factor activation ultimately leads to an increase in virus infectivity, other factors may be necessary for reovirus replication.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号