首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12篇
  免费   1篇
  2022年   1篇
  2020年   1篇
  2015年   1篇
  2013年   1篇
  2012年   2篇
  2011年   1篇
  2009年   1篇
  2007年   2篇
  2004年   1篇
  2003年   1篇
  1999年   1篇
排序方式: 共有13条查询结果,搜索用时 187 毫秒
1.
In organic semiconductors, optical excitation does not necessarily produce free carriers. Very often, electron and hole are bound together to form an exciton. Releasing free carriers from the exciton is essential for the functioning of photovoltaics and optoelectronic devices, but it is a bottleneck process because of the high exciton binding energy. Inefficient exciton dissociation can limit the efficiency of organic photovoltaics. Here, nanoscale features that can allow the free carrier generation to occur spontaneously despite being an energy uphill process are determined. Specifically, by comparing the dissociation dynamics of the charge transfer (CT) exciton at two donor–acceptor interfaces, it is found that the relative orientation of the electron and hole wavefunction within a CT exciton plays an important role in determining whether the CT exciton will decompose into the higher energy free electron–hole pair or relax to the lower energy tightly‐bound CT exciton. The concept of the entropic driving force is combined with the structural anisotropy of typical organic crystals to devise a framework that can describe how the orientation of the delocalized electronic wavefunction can be manipulated to favor the energy‐uphill spontaneous dissociation of CT excitons over the energy‐downhill CT exciton cooling.  相似文献   
2.
Groups III and IV afferents carry sensory information regarding the muscle exercise pressor reflex, although the central integrating circuits of the reflex in humans are still poorly defined. Emerging evidence reports that the periaqueductal gray (PAG) could be a major site for integrating the "central command" component that initiates the cardiovascular response to exercise, since this area is activated during exercise and direct stimulation of the dorsal PAG causes an increase in arterial blood pressure (ABP) in humans. Here we recorded local field potentials (LFPs) from various "deep" brain nuclei during exercise tasks designed to elicit the muscle pressor reflex. The patients studied had undergone neurosurgery for the treatment of movement or pain disorders, thus had electrodes implanted stereotactically either in the PAG, subthalamic nucleus, globus pallidus interna, thalamus, hypothalamus, or anterior cingulate cortex. Fast Fourier transform analysis was applied to the neurograms to identify the power of fundamental spectral frequencies. Our PAG patients showed significant increases in LFP power at frequencies from 4 to 8 Hz (P < 0.01), 8 to 12 Hz (P < 0.001), and 12 to 25 Hz (P < 0.001). These periods were associated with maintained elevated ABP during muscle occlusion following exercise. Further increases in exercise intensity resulted in corresponding increases in PAG activity and ABP. No significant changes were seen in the activity of other nuclei during occlusion. These electrophysiological data provide direct evidence for a role of the PAG in the integrating neurocircuitry of the exercise pressor reflex in humans.  相似文献   
3.
4.
We have identified a putative signalling feature of the cytoplasmic domains of the tumour necrosis factor (TNF) family members based on available amino acid sequence data. A casein kinase I (CKI) consensus sequence is conserved in the cytoplasmic domain of six of 15 members of the type II integral membrane TNF ligand family. We examined the phosphorylation state of transmembrane tumour necrosis factor-alpha (mTNF) with [32P]orthophosphate labelling and in vitro kinase assays, in lipopolysaccharide-stimulated RAW264.7 cells. A dimeric form of the type I soluble TNF receptor (sTNFR) was found to dephosphorylate mTNF. This effect could be prevented by treatment with phosphatase inhibitors. Recombinant CKI was able to phosphorylate mTNF that had been dephosphorylated by sTNFR ligation in vivo, and this was less effective if phosphatase inhibitors had been used to prevent mTNF dephosphorylation. A mutated form of mTNF, lacking the CKI recognition site, cannot be phosphorylated by the enzyme. Binding of sTNFR to mTNF induced an increase in intracellular calcium levels in RAW264.7 cells, implying the presence of an associated signalling pathway. We predict that this CKI motif is phosphorylated in other TNF ligand members, and that it represents a new insight into the mechanism of 'reverse signalling' in this cytokine family.  相似文献   
5.
The interactions of the unpaired thiol residue (Cys34) of human serum albumin (HSA) with low-molecular-weight thiols and an Au(I)-based antiarthritic drug have been examined using electrospray ionization mass spectrometry. Early measurements of the amount of HSA containing Cys34 as the free thiol suggested that up to 30% of circulating HSA bound cysteine as a mixed disulfide. It has also been suggested that reaction of HSA with cysteine, occurs only on handling and storage of plasma. In our experiments, there were three components of HSA in freshly collected plasma from normal volunteers, HSA, HSA+cysteine, and HSA+glucose in the ratio approximately 50:25:25. We addressed this controversy by using iodoacetamide to block the free thiol of HSA in fresh plasma, preventing its reaction with plasma cysteine. When iodoacetamide was injected into a vacutaner tube as blood was collected, the HSA was modified by iodoacetamide, with 20-30% present as the mixed disulfide with cysteine (HSA+cys). These data provide strong evidence that 20-30% of HSA in normal plasma contains one bound cysteine. Reaction of HSA with [Au(S(2)O(3))(2)](3-) resulted in formation of the adducts HSA+Au(S(2)O(3)) and HSA+Au. Reaction of HSA with iodoacetamide prior to treatment with [Au(S(2)O(3))(2)](3-) blocked the formation of gold adducts.  相似文献   
6.
Pelvic ganglia are mixed sympathetic-parasympathetic ganglia and provide the majority of the autonomic innervation to the urogenital organs. Here we describe the structural and histochemical features of the major pelvic ganglion in the male mouse and compare two different mouse strains. The basic structural features of the ganglion are similar to those in the male rat. Almost all pelvic ganglion cells are monopolar and most are cholinergic. All contain either neuropeptide Y (NPY) or vasoactive intestinal peptide (VIP), or both peptides together. The peptide coexistence varies between strains, with C57BL/6 mice having similar proportions of neurons with NPY alone, VIP alone or both peptides. In contrast, virtually all pelvic neurons in the Quackenbush-Swiss (QS) strain express NPY, i.e. the level of VIP/NPY coexistence is much higher. Cholinergic axons provide the major nerve supply to epithelia of reproductive organs, bladder smooth muscle and, as described previously, penile erectile tissue. They also provide a minor component of the smooth muscle innervation of the prostate gland, seminal vesicles and vas deferens. Virtually all non-cholinergic pelvic ganglion cells are noradrenergic and contain NPY. Their major target is smooth muscle of reproductive organs. This study shows that the male mouse pelvic ganglion bears many similarities to that in the rat, but that VIP/NPY colocalisation is much more common in the mouse. We also show that there are differences in peptide expression in parasympathetic pelvic neurons between strains of mice. These studies provide the framework for future investigations on neural regulation of urogenital function, particularly in transgenic and knockout models.  相似文献   
7.
In Neurospora, genes not paired during meiosis are targeted by meiotic silencing by unpaired DNA (MSUD). Here, our bimolecular fluorescence complementation (BiFC) study suggests that RNA-directed RNA polymerase, Dicer, Argonaute, and others form a silencing complex in the perinuclear region, with intimate interactions among the majority of them. We have also shown that SAD-2 is likely the anchor for this assembly.  相似文献   
8.
The idea from human societies that self-interest can lead to a breakdown of cooperation at the group level is sometimes termed the public goods dilemma. We tested this idea in the opportunistic bacterial pathogen, Pseudomonas aeruginosa, by examining the influence of putative cheats that do not cooperate via cell-to-cell signalling (quorum-sensing, QS). We found that: (i) QS cheating occurs in biofilm populations owing to exploitation of QS-regulated public goods; (ii) the thickness and density of biofilms was reduced by the presence of non-cooperative cheats; (iii) population growth was reduced by the presence of cheats, and this reduction was greater in biofilms than in planktonic populations; (iv) the susceptibility of biofilms to antibiotics was increased by the presence of cheats; and (v) coercing cooperator cells to increase their level of cooperation decreases the extent to which the presence of cheats reduces population productivity. Our results provide clear support that conflict over public goods reduces population fitness in bacterial biofilms, and that this effect is greater than in planktonic populations. Finally, we discuss the clinical implications that arise from altering the susceptibility to antibiotics.  相似文献   
9.
Quorum sensing     
  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号